Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unsaturated acetals cyclopropanation

Much of the early work into the rhodium(II)-catalysed formation of oxazoles from diazocarbonyl compounds was pioneered by the group of Helquist. They first reported, in 1986, the rhodium(II) acetate catalysed reaction of dimethyl diazomalonate with nitriles.<86TL5559, 93T5445, 960S(74)229> A range of nitriles was screened, including aromatic, alkyl and vinyl derivatives with unsaturated nitriles, cyclopropanation was found to be a competing reaction (Table 3). [Pg.10]

The a,/J-unsaturated acetal 24 reacts with diazomethane under palladium(II) acetate catalysis to provide the oxazolidinyl-substituted cyclopropane 25 with high diastereomeric purity. Subsequent hydrolysis gives (-)-(l,R,2/ )-fraft.v-2-phenylcyclopropanecarboxaldehyde with recovery of the ( —)-2-methylamino-l-phenyl-l-propanol [(-)-ephedrine] auxiliary79. [Pg.997]

D.ii. Addition to Aromatic Derivatives. Aromatic compounds also react with carbenes, but ring expansion usually follows the initial cyclopropanation. In a typical example, 2-methoxynaphthalene (373) reacted with dichlorocarbene to give 374, and subsequent ring expansion gave 375, 99 which is a general reaction of enol ethers, which give either unsaturated acetals or unsaturated carbonyls. oo... [Pg.1209]

Cyclopropanes are efficiently obtained from alkenes by Simmons-Smith reaction applying CH2l2/Zn-Cu couple or CH2l2/Et2Zn as reagents. A variety of compounds bearing a chiral moiety have been studied, as for example a,P-unsaturated acetals and oxazolidines, enolethers, allylic alcohols, alkenylboronic esters as well as a,p-unsaturated carbonyl compounds. [Pg.2]

Addition of dicarboethoxycarbene to cycloocta-1,3-diene yields a mixture of cis-and fran -cyclopropane adducts, probably by addition of the singlet carbene on the partially isomerized diene (due to the irradiation). Diastereoselective cyclopropan-ation of a ,/3-unsaturated acetals has been described using a camphor-derived chiral auxiliary. Intramolecular cyclopropenation of a diazo ester, tethered through a naphthalene, to an alkyne was catalysed by rhodium acetate and reported as a efficient method unfortunately, the use of chiral rhodium catalysts gave a less efficient reaction and did not provide high asymmetric induction. ... [Pg.269]

Palladium(II) acetate was found to be a good catalyst for such cyclopropanations with ethyl diazoacetate (Scheme 19) by analogy with the same transformation using diazomethane (see Sect. 2.1). The best yields were obtained with monosubstituted alkenes such as acrylic esters and methyl vinyl ketone (64-85 %), whereas they dropped to 10-30% for a,p-unsaturated carbonyl compounds bearing alkyl groups in a- or p-position such as ethyl crotonate, isophorone and methyl methacrylate 141). In none of these reactions was formation of carbene dimers observed. 7>ms-benzalaceto-phenone was cyclopropanated stereospecifically in about 50% yield PdCl2 and palladium(II) acetylacetonate were less efficient catalysts 34 >. Diazoketones may be used instead of diazoesters, as the cyclopropanation of acrylonitrile by diazoacenaph-thenone/Pd(OAc)2 (75 % yield) shows142). [Pg.125]

Intramolecular oxonium ylide formation is assumed to initialize the copper-catalyzed transformation of a, (3-epoxy diazomethyl ketones 341 to olefins 342 in the presence of an alcohol 333 . The reaction may be described as an intramolecular oxygen transfer from the epoxide ring to the carbenoid carbon atom, yielding a p,y-unsaturated a-ketoaldehyde which is then acetalized. A detailed reaction mechanism has been proposed. In some cases, the oxonium-ylide pathway gives rise to additional products when the reaction is catalyzed by copper powder. If, on the other hand, diazoketones of type 341 are heated in the presence of olefins (e.g. styrene, cyclohexene, cyclopen-tene, but not isopropenyl acetate or 2,3-dimethyl-2-butene) and palladium(II) acetate, intermolecular cyclopropanation rather than oxonium ylide derived chemistry takes place 334 ). [Pg.210]

The synthesis of compounds 39, 41, and 43 by the ODPM rearrangement opens a novel photochemical route to chrysanthemic acid and other cyclopropane carboxylic acids present in pyrethrins and pyrethroids [52]. In fact, aldehyde 43 can be transformed to tran -chrysanthemic acid by simple oxidation. This new synthetic route to ecologically benign insecticides competes with the one previously described by us using the 1-ADPM rearrangement of p,y-unsaturated oxime acetates [30,53]. [Pg.14]

In qualitative terms, the rearrangement reaction is considerably more efficient for the oxime acetate 107b than for the oxime ether 107a. As a result, the photochemical reactivity of the oxime acetates 109 and 110 was probed. Irradiation of 109 for 3 hr, under the same conditions used for 107, affords the cyclopropane 111 (25%) as a 1 2 mixture of Z.E isomers. Likewise, DCA-sensitized irradiation of 110 for 1 hr yields the cyclopropane derivative 112 (16%) and the dihydroisoxazole 113 (18%). It is unclear at this point how 113 arises in the SET-sensitized reaction of 110. However, this cyclization process is similar to that observed in our studies of the DCA-sensitized reaction of the 7,8-unsaturated oximes 114, which affords the 5,6-dihydro-4//-l,2-oxazines 115 [68]. A possible mechanism to justify the formation of 113 could involve intramolecular electrophilic addition to the alkene unit in 116 of the oxygen from the oxime localized radical-cation, followed by transfer of an acyl cation to any of the radical-anions present in the reaction medium. [Pg.29]

More recent reports from Cordova [155] and Wang [156] have described the cyclopropanation of a, P-unsaturated aldehydes 99 with diethyl bromomalonates 100 and 2-bromo ethyl acetoacetate catalysed by a series of diaryIprolinol derivatives. Both describe 30 as being the most efficient catalyst in many cases and optimal reaction conditions are similar. Some representative examples of this cyclopropanation are shown in Scheme 40. The transformation results in the formation of two new C-C bonds, a new quaternary carbon centre and a densely functionalised product ripe for further synthetic manipulation. Triethylamine or 2,6-lutidine are required as a stoichiometric additive in order to remove the HBr produced during the reaction sequence. The use of sodium acetate (4.0 equivalents) as an additive led to subsequent stereoselective ring opening of the cyclopropane to give a,P-unsaturated aldehydes 101. It can be envisioned that these highly functionalised materials may prove useful substrates in a variety of imin-ium ion or metal catalysed transformations. [Pg.314]

Chiral acetals have also been used as chiral auxiliaries for the enantioselective cyclopropanation of a,/3-unsaturated carbonyl derivatives (Figure 7). Yamamoto s tartrate derived auxiliaries (15) based on the ether-directed cyclopropanation allowed the efficient preparation of cyclopropylcarboxaldehyde derivatives The reaction proceeded with high diastereocontrol, and the auxiliary could be cleaved under mild acidic conditions (equation 73). [Pg.268]

Asymmetric induction in the cyclopropanations of unsaturated substrates with methylene has been extensively investigated. A propensity of the Simmons-Simth and related reagents to make coordination to basic atoms is most frequently exploited. Treatment of a,/J-unsaturated aldehyde acetals derived from the aldehydes and chiral dialkyl tartrates or 2,4-pentanediol, with diiodomethane/diethylzinc in hexane, produces cyclopro-panecarboxaldehyde acetals with high diastereoselectivity (equation 69)109 110. Uniformly good diastereoselectivity has also been realized in the cyclopropanations of chiral acetals... [Pg.283]

Unsaturated ethers. The efficient insertion of carboalkoxycarbenes into the O—H bond of alcohols catalyzed by Rh(II) acetate (5, 571-572) extends to reactions with unsaturated alcohols. For this reaction copper(II) triflate is usually comparable to rhodium(II) alkanoates. Insertion predominates over cyclopropanation in the case of ethylenic alcohols. In reactions with acetylenic alcohols, cyclopropenation can predominate over insertion because of steric effects, as in reactions of HC=CC(CH3)2OH where the insertion/addition ratio is 36 56. [Pg.235]

Dimethyl diazomalonate undergoes reaction with nitriles in the presence of rhodium(II) acetate to give 2-substituted-4-carbomethoxy-l,3-oxazoles (255). The reaction proceeds with a wide range of nitriles,133-139 although cyclopropanation is a competing process in the case of unsaturated nitriles.129... [Pg.152]

As with other intramolecular ene reactions, this reaction is best suited to the preparation of cyclopentanes, but can also be used for the preparation of cyclohexanes. The reaction cannot be used for the formation of cyclopropanes or cyclobutanes since the unsaturated carbonyl compound is more stable than the ene adduct. 8,e-Unsaturated ketones (167) do not give cyclobutanes (171) by enolization to give (170) followed by a type I reaction but instead give cyclohexanones (169) by enolization to give (168) followed by a type II reaction. Alkynes can replace alkenes as the enophile. Enols can be prepared from pyrolysis of enol esters, enol ethers and acetals and from -keto esters and 1,3-dicaibonyl compounds. Tlie reaction is well suited to the preparation of fused or bridged bicyclic and spirocyclic compounds. Tandem ene reactions in which two rings are formed in one pot from dienones have also been described. The examples discussed below 2-i63 restricted to those published since Conia and Le Perchec s 1975... [Pg.22]

Methylene ( CH2) generated photochemically or thermally from diazomethane is highly reactive and is prone to incur side reactions to a substantial extent. In order to avoid these undesirable complexities, the cyclopropanation of multiple bonds with diazomethane has usually been carried out under catalytic conditions The catalysts most frequently employed are copper salts and copper complexes as well as palladium acetate. The intermediate produced in the copper salt-catalyzed reactions behaves as a weak electrophile and exhibits a preference to attack an electron-rich double bond. It is also reactive enough to attack aromatic nuclei. In contrast, the palladium acetate-catalyzed decomposition of diazomethane cyclopropanates a,a- or a,jS-disubstituted a,jS-unsaturated carbonyl compounds in high yields (equation 47). The trisubstituted derivatives, however, do not react. The palladium acetate-catalyzed reaction has been applied also for the cyclopropanations of some strained cyclic alkenesstyrene derivatives and terminal double bondsHowever, the cyclopropanation of non-activated, internal double bonds occurs only with difficulty. The difference, thereby. [Pg.322]

An unprecedented cyclopropanation reaction was observed during the reaction of ketene alkylsilyl acetals (191) with bromoform-diethylzinc. When monosubstituted acetals were used, cyclopropanecarboxylic esters (195) were formed by a novel C-H insertion. When disubstituted ketene acetals were used, byproducts such as a,)5-ethylenic esters (197) were also formed presumably via 196 (equation 49). This reaction provides a convenient method for the preparation of the bicyclo[3.1.0] hexane system and can be advantageously compared to the copper-catalysed intramolecular cyclization of unsaturated a-diazoketones . [Pg.470]

An asymmetric Simmons-Smith reaction was reported by Kang et al. [18]. The reaction of (3-D-fructopyranoside 13 with a,(3-unsaturated aldehydes gave enrfo-acetals 14 along with exo-isomers 15 in a ratio of about 1.5 1. The enrfo-acetals afforded the best selectivity, typically giving (2/f,3/f)-hydroxymethyl cyclopropanes 17 with up to 85% ee. It should be noted that the corresponding exo-acetals 15 underwent the cyclopropanation reaction with lower stereoselectivity. In these cases, the group cannot effectively block either side of the alkene in contrast to the endo-isomer [18] (Scheme 10.3). [Pg.443]


See other pages where Unsaturated acetals cyclopropanation is mentioned: [Pg.944]    [Pg.220]    [Pg.273]    [Pg.8]    [Pg.81]    [Pg.111]    [Pg.753]    [Pg.7]    [Pg.283]    [Pg.684]    [Pg.341]    [Pg.341]    [Pg.207]    [Pg.271]    [Pg.283]    [Pg.684]    [Pg.153]    [Pg.626]    [Pg.414]    [Pg.543]    [Pg.512]    [Pg.244]    [Pg.402]    [Pg.804]   
See also in sourсe #XX -- [ Pg.14 , Pg.490 ]

See also in sourсe #XX -- [ Pg.14 , Pg.490 ]




SEARCH



Acetates cyclopropanes

Cyclopropanation of unsaturated acetal

© 2024 chempedia.info