Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unknown reactivity

The reactivity ratios may be evaluated by performing a series of low-conversion copolymerizations at different, monomer-feed ratios, isolating the copolymer, and determining its composition. A number of mathematical analyses have been proposed in order to provide, from the experimental data, correct values for the two unknown reactivity ratios. There is some difference of opinion as to the best method for obtaining values having quantifiable errors.84,64" However, several of... [Pg.177]

Azo with unknown reactive group Disazo with vinylsulfonyl reactive system... [Pg.626]

CdClj. Although the mechanisms by which Cd initiates apoptosis in these cells are presently unknown, reactive oxygen species are likely to play a role. [Pg.223]

Di Carlo P, Bmne WH, Martinez M, Harder H, Lesher R, Ren X, Thomberry T, Carroll M, Young V, Shepson P, Riemer D, Apel E, Campbell C (2004) Missing OH reactivity in a forest evidence for unknown reactive biogenic VOCs. Sci Mag 304 722-725... [Pg.93]

Sinha V, Williams J, Lelieveld J, Ruuskanen TM, Kajos MK, Patokoski J, Hellen H, Hakola H, Mogensen D, Boy M, Rinne J, Kulmala M (2010) OH reactivity measurements within a boreal forest evidence for unknown reactive canissions. Environ Sci Technol 44 6614-6620... [Pg.93]

Sinha, V., Williams, J., Crowley, J.N., Lelieveld, J. The comparative reactivity method a new tool to measure total OH reactivity in ambient air. Atmos. Chem. Phys. 8, 2213-2227 (2008) Sinha, V., Williams, J., Lelieveld, J., Ruuskanen, T.M., Kajos, M.K., Patokoski, J., Hellen, H., Hakola, H., Mogensen, D., Boy, M., Rinne, J., Kubnala, M. OH reactivity measurements within a boreal forest evidence for unknown reactive emissions. EnvirMi. Sci. Technol. 44, 6614-6620 (2010)... [Pg.383]

Despite the fact that solutions of acetyl nitrate prepared from purified nitric acid contained no detectable nitrous acid, the sensitivity of the rates of nitration of very reactive compounds to nitrous acid demonstrated in this work is so great that concentrations of nitrous acid below the detectable level could produce considerable catalytic effects. However, because the concentration of nitrous acid in these solutions is unknown the possibility cannot absolutely be excluded that the special mechanism is nitration by a relatively unreactive electrophile. Whatever the nature of the supervenient reaction, it is clear that there is at least a dichotomy in the mechanism of nitration for very reactive compounds, and that, unless the contributions of the separate mechanisms can be distinguished, quantitative comparisons of reactivity are meaningless. [Pg.91]

Oxidation. Hydrogen peroxide is a strong oxidant. Most of its uses and those of its derivatives depend on this property. Hydrogen peroxide oxidizes a wide variety of organic and inorganic compounds, ranging from iodide ions to the various color bodies of unknown stmcture in ceUulosic fibers. The rate of these reactions may be quite slow or so fast that the reaction occurs on a reactive shock wave. The mechanisms of these reactions are varied and dependent on the reductive substrate, the reaction environment, and catalysis. Specific reactions are discussed in a number of general and other references (4,5,32—35). [Pg.472]

When using a cation source in conjunction with a Friedel-Crafts acid the concentration of growing centers is most often difficult to measure and remains unknown. By the use of stable carbocation salts (for instance trityl and tropyhum hexachloroantimonate) the uncertainty of the concentration of initiating cations is eliminated. Due to the highly reproducible rates, stable carbocation salts have been used in kinetic studies. Their use, however, is limited to cationicaHy fairly reactive monomers (eg, A/-vinylcarbazole, -methoxystyrene, alkyl vinyl ethers) since they are too stable and therefore ineffective initiators of less reactive monomers, such as isobutylene, styrene, and dienes. [Pg.245]

Much of the experimental work in chemistry deals with predicting or inferring properties of objects from measurements that are only indirectly related to the properties. For example, spectroscopic methods do not provide a measure of molecular stmcture directly, but, rather, indirecdy as a result of the effect of the relative location of atoms on the electronic environment in the molecule. That is, stmctural information is inferred from frequency shifts, band intensities, and fine stmcture. Many other types of properties are also studied by this indirect observation, eg, reactivity, elasticity, and permeabiHty, for which a priori theoretical models are unknown, imperfect, or too compHcated for practical use. Also, it is often desirable to predict a property even though that property is actually measurable. Examples are predicting the performance of a mechanical part by means of nondestmctive testing (qv) methods and predicting the biological activity of a pharmaceutical before it is synthesized. [Pg.417]

Given a number Nr of waste (rich) streams and a number Ns of lean streams (physical and reactive MSAs), it is desired to synthesize a cost-effective network of physical and/or reactive mass exchangers which can preferentially transfer a certain undesirable species. A, from the waste streams to the MSAs whereby it may be reacted into other species. Given also are the flowrate of each waste stream, G/, its supply (inlet) composition, yf, and target (outlet) composition, yj, where i = 1,2,..., Nr. In addition, the supply and target compositions, Xj and x j, are given for each MSA, where j = 1,2, Ns. TTie flowrate of any lean stream, Ly, is unknown but is bounded by a given maximum available flowrate of that stream, i.e.. [Pg.192]

The reactivities of the substrate and the nucleophilic reagent change vyhen fluorine atoms are introduced into their structures This perturbation becomes more impor tant when the number of atoms of this element increases A striking example is the reactivity of alkyl halides S l and mechanisms operate when few fluorine atoms are incorporated in the aliphatic chain, but perfluoroalkyl halides are usually resistant to these classical processes However, formal substitution at carbon can arise from other mecharasms For example nucleophilic attack at chlorine, bromine, or iodine (halogenophilic reaction, occurring either by a direct electron-pair transfer or by two successive one-electron transfers) gives carbanions These intermediates can then decompose to carbenes or olefins, which react further (see equations 15 and 47) Single-electron transfer (SET) from the nucleophile to the halide can produce intermediate radicals that react by an SrnI process (see equation 57) When these chain mechanisms can occur, they allow reactions that were previously unknown Perfluoroalkylation, which used to be very rare, can now be accomplished by new methods (see for example equations 48-56, 65-70, 79, 107-108, 110, 113-135, 138-141, and 145-146)... [Pg.446]

The differenee in reaction rates of the amino alcohols to isobutyraldehyde and the secondary amine in strong acidic solutions is determined by the reactivity as well as the concentration of the intermediate zwitterions [Fig. 2, Eq. (10)]. Since several of the equilibrium constants of the foregoing reactions are unknown, an estimate of the relative concentrations of these dipolar species is difficult. As far as the reactivity is concerned, the rate of decomposition is expected to be higher, according as the basicity of the secondary amines is lower, since the necessary driving force to expel the amine will increase with increasing basicity of the secondary amine. The kinetics and mechanism of the hydrolysis of enamines demonstrate that not only resonance in the starting material is an important factor [e.g., if... [Pg.112]

A proposed explanation of the reactivity of the 4-position versus that of the 2-position in pyridinium compounds has been advanced by Kosower and Klinedinst nucleophiles which are expected to form charge-transfer complexes will tend to substitute at the 4-position. However, it is not clear why this (usually unknown) property should govern the site of substitution, except for a bifunctional nucleophile such as hydrosulfite ion which can form a suitable bridge from the nitrogen to the 4-position. [Pg.180]

Tire purpose of this chapter is to review the chemistry of the nitro-1,5-, -1,6-, -1,7-, and -1,8-naphthyridines (1) [nitro-2,6- and nitro-2,7-naph-thyridines (2) are unknown], with special attention to the results obtained in the laboratories of both authors. Tliis article mainly refers to the synthesis and reactivity of the nitronaphthyridines their physical and spectroscopic properties and biological activity are only covered briefly. For the convenience of the reader a table listing melting points of (di-)nitronaph-thyridines and some derivatives is included (Table III). Tire literature to about 1998 has been covered. [Pg.286]

As a result, we could open the door to a new frontier in indole chemistry. Various 1-hydroxyindoles (4a), l-hydroxytryptophans(la), 1-hydroxytryptamines (lb), and their derivatives have been given birth for the first time. As predicted, 1-hydroxytryptophan and 1-hydroxytryptamine derivatives are found to undergo previously unknown nucleophilic substitution reactions. In addition, we have been uncovering many interesting reactivities characteristic of 1-hydroxyindole structures. From the synthetic point of view, useful building blocks for indole alkaloids, hither to inaccessible by the well-known electrophilic reactions in indole chemistry, have now become readily available. Many biologically interesting compounds have been prepared as well. [Pg.103]

The nucleophilic substitution reactions are still more limited in scope owing to the instability of the isoxazole ring toward nucleophilic reagents. Homolytic reactions appear to be unknown though some of the reactions being studied are possibly of this type. Besides those reactions which are characteristic of the reactivity of the isoxazole nucleus itself, we shall consider in this section some substitution reactions in the side chain organomagnesium synthesis in the isoxazole series, condensation reactions of the methyl groups of methyl-isoxazoles, and finally some miscellaneous reactions. [Pg.382]


See other pages where Unknown reactivity is mentioned: [Pg.411]    [Pg.706]    [Pg.508]    [Pg.317]    [Pg.340]    [Pg.455]    [Pg.991]    [Pg.89]    [Pg.285]    [Pg.658]    [Pg.625]    [Pg.89]    [Pg.117]    [Pg.160]    [Pg.376]    [Pg.177]    [Pg.169]    [Pg.411]    [Pg.706]    [Pg.508]    [Pg.317]    [Pg.340]    [Pg.455]    [Pg.991]    [Pg.89]    [Pg.285]    [Pg.658]    [Pg.625]    [Pg.89]    [Pg.117]    [Pg.160]    [Pg.376]    [Pg.177]    [Pg.169]    [Pg.1057]    [Pg.297]    [Pg.300]    [Pg.182]    [Pg.220]    [Pg.246]    [Pg.218]    [Pg.61]    [Pg.404]    [Pg.288]    [Pg.200]    [Pg.305]    [Pg.310]    [Pg.330]    [Pg.362]   
See also in sourсe #XX -- [ Pg.329 , Pg.334 , Pg.335 , Pg.337 ]




SEARCH



Unknown

© 2024 chempedia.info