Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum mechanical uncertainty

Starting with the quantum-mechanical postulate regarding a one-to-one correspondence between system properties and Hemiitian operators, and the mathematical result that only operators which conmuite have a connnon set of eigenfiinctions, a rather remarkable property of nature can be demonstrated. Suppose that one desires to detennine the values of the two quantities A and B, and that tire corresponding quantum-mechanical operators do not commute. In addition, the properties are to be measured simultaneously so that both reflect the same quantum-mechanical state of the system. If the wavefiinction is neither an eigenfiinction of dnor W, then there is necessarily some uncertainty associated with the measurement. To see this, simply expand the wavefiinction i in temis of the eigenfiinctions of the relevant operators... [Pg.15]

Because of the quantum mechanical Uncertainty Principle, quantum m echanics methods treat electrons as indistinguishable particles, This leads to the Paiili Exclusion Pnn ciple, which states that the many-electron wave function—which depends on the coordinates of all the electrons—must change sign whenever two electrons interchange positions. That IS, the wave function must be antisymmetric with respect to pair-wise permutations of the electron coordinates. [Pg.34]

How to extract from E(qj,t) knowledge about momenta is treated below in Sec. III. A, where the structure of quantum mechanics, the use of operators and wavefunctions to make predictions and interpretations about experimental measurements, and the origin of uncertainty relations such as the well known Heisenberg uncertainty condition dealing with measurements of coordinates and momenta are also treated. [Pg.10]

Two properties, in particular, make Feynman s approach superior to Benioff s (1) it is time independent, and (2) interactions between all logical variables are strictly local. It is also interesting to note that in Feynman s approach, quantum uncertainty (in the computation) resides not in the correctness of the final answer, but, effectively, in the time it takes for the computation to be completed. Peres [peres85] points out that quantum computers may be susceptible to a new kind of error since, in order to actually obtain the result of a computation, there must at some point be a macroscopic measurement of the quantum mechanical system to convert the data stored in the wave function into useful information, any imperfection in the measurement process would lead to an imperfect data readout. Peres overcomes this difficulty by constructing an error-correcting variant of Feynman s model. He also estimates the minimum amount of entropy that must be dissipated at a given noise level and tolerated error rate. [Pg.676]

Whether this concept can stand up under a rigorous psychological analysis has never been discussed, at least in the literature of theoretical physics. It may even be inconsistent with quantum mechanics in that the creation of a finite mass is equivalent to the creation of energy that, by the uncertainty principle, requires a finite time A2 A h. Thus the creation of an electron would require a time of the order 10 20 second. Higher order operations would take more time, and the divergences found in quantum field theory due to infinite series of creation operations would spread over an infinite time, and so be quite unphysical. [Pg.450]

The uncertainty principle is negligible for macroscopic objects. Electronic devices, however, are being manufactured on a smaller and smaller scale, and the properties of nanoparticles, particles with sizes that range from a few to several hundred nanometers, may be different from those of larger particles as a result of quantum mechanical phenomena, (a) Calculate the minimum uncertainty in the speed of an electron confined in a nanoparticle of diameter 200. nm and compare that uncertainty with the uncertainty in speed of an electron confined to a wire of length 1.00 mm. (b) Calculate the minimum uncertainty in the speed of a I.i+ ion confined in a nanoparticle that has a diameter of 200. nm and is composed of a lithium compound through which the lithium ions can move at elevated temperatures (ionic conductor), (c) Which could be measured more accurately in a nanoparticle, the speed of an electron or the speed of a Li+ ion ... [Pg.179]

III. Experimental observation of Quantum Mechanics. Only this final section should address the rules that govern interpretations of experiments measuring properties of QM systems with macroscopic devices. This includes probability interpretation, uncertainty relations, complementarity and correspondence. Then experiments can be discussed to show how the wave functions manipulated in section I can be used to predict the probabilistic outcome of experiments. [Pg.29]

For studies in molecular physics, several characteristics of ultrafast laser pulses are of crucial importance. A fundamental consequence of the short duration of femtosecond laser pulses is that they are not truly monochromatic. This is usually considered one of the defining characteristics of laser radiation, but it is only true for laser radiation with pulse durations of a nanosecond (0.000 000 001s, or a million femtoseconds) or longer. Because the duration of a femtosecond pulse is so precisely known, the time-energy uncertainty principle of quantum mechanics imposes an inherent imprecision in its frequency, or colour. Femtosecond pulses must also be coherent, that is the peaks of the waves at different frequencies must come into periodic alignment to construct the overall pulse shape and intensity. The result is that femtosecond laser pulses are built from a range of frequencies the shorter the pulse, the greater the number of frequencies that it supports, and vice versa. [Pg.6]

The position, momentum, and energy are all dynamical quantities and consequently possess quantum-mechanical operators from which expectation values at any given time may be determined. Time, on the other hand, has a unique role in non-relativistic quantum theory as an independent variable dynamical quantities are functions of time. Thus, the uncertainty in time cannot be related to a range of expectation values. [Pg.103]

The original Hohenberg-Kohn theorem was directly applicable to complete systems [14], The first adaptation of the Hohenberg-Kohn theorem to a part of a system involved special conditions the subsystem considered was a part of a finite and bounded entity regarded as a hypothetical system [21], The boundedness condition, in fact, the presence of a boundary beyond which the hypothetical system did not extend, was a feature not fully compatible with quantum mechanics, where no such boundaries can exist for any system of electron density, such as a molecular electron density. As a consequence of the Heisenberg uncertainty relation, molecular electron densities cannot have boundaries, and in a rigorous sense, no finite volume, however large, can contain a complete molecule. [Pg.67]

Werner Heisenberg (1901-1976 Nobel Prize for physics 1932) developed quantum mechanics, which allowed an accurate description of the atom. Together with his teacher and friend Niels Bohr, he elaborated the consequences in the "Copenhagen Interpretation" — a new world view. He found that the classical laws of physics are not valid at the atomic level. Coincidence and probability replaced cause and effect. According to the Heisenberg Uncertainty Principle, the location and momentum of atomic particles cannot be determined simultaneously. If the value of one is measured, the other is necessarily changed. [Pg.26]

In the 1920s it was found that electrons do not behave like macroscopic objects that are governed by Newton s laws of motion rather, they obey the laws of quantum mechanics. The application of these laws to atoms and molecules gave rise to orbital-based models of chemical bonding. In Chapter 3 we discuss some of the basic ideas of quantum mechanics, particularly the Pauli principle, the Heisenberg uncertainty principle, and the concept of electronic charge distribution, and we give a brief review of orbital-based models and modem ab initio calculations based on them. [Pg.305]

Quantum mechanics enters here with a statement of uncertainty relating energy and time. If you know the lifetime of the excited state in a transition then you cannot know exactly the energy of the transition. This uncertainty principle is wrapped up in the following relation ... [Pg.47]

Uncertainty principle Quantum mechanics restricts the knowledge of certain pairs of variables, notably time and energy and position and momentum, so that complete... [Pg.316]

Perhaps the most widely discussed source of uncertainty in electrostatic calculations is the location of the solute/solvent boundary. The most common treatment is to place the boundary at the surface of a set of overlapping spheres centered at the nuclei. But what radius should one use for those spheres One common answer is van der Waals radii times I.2.46 In our own quantum mechanical solvation models,12 27 and those of several others59, 69, these radii are empirical parameters. Recently Barone et al.70 have modified the PCM to use charge-dependent united-atom spheres instead of all-atom spheres, and they optimized the electrostatic radii for a... [Pg.82]

As for classical systems, measurement of the properties of macroscopic quantum systems is subject to experimental error that exceeds the quantum-mechanical uncertainty. For two measurable quantities F and G the inequality is defined as AFAG >> (5F6G.The state vector of a completely closed system described by a time-independent Hamiltonian H, with eigenvalues En and eigenfunctions is represented by... [Pg.463]

Fig. 4.8. (a) The measured (squares) and predicted (thick lines) intensity ratio r(q) between harmonics from H2 and that from D2 molecules as functions of harmonic order q. tqm and rcM are the predictions with and without quantum effect for nuclear dynamics see text, (b) The measured (squares) and predicted (thick line) relative phases between harmonics from H2 and those from D2 molecules as functions of harmonic order q. Measuring the relative phases directly corresponds to observing the nuclear motions, i.e., the nuclear displacement of H2 Aii1 2 (right axis) as a function of excursion time r (superior axis). For (a) and (b), vertical and horizontal errors represent SEM for 800 laser shots and those from quantum mechanical uncertainty [27]... [Pg.75]

Chaos provides an excellent illustration of this dichotomy of worldviews (A. Peres, 1993). Without question, chaos exists, can be experimentally probed, and is well-described by classical mechanics. But the classical picture does not simply translate to the quantum view attempts to find chaos in the Schrodinger equation for the wave function, or, more generally, the quantum Liouville equation for the density matrix, have all failed. This failure is due not only to the linearity of the equations, but also the Hilbert space structure of quantum mechanics which, via the uncertainty principle, forbids the formation of fine-scale structure in phase space, and thus precludes chaos in the sense of classical trajectories. Consequently, some people have even wondered if quantum mechanics fundamentally cannot describe the (macroscopic) real world. [Pg.53]

The density of He I at the boiling point at 1 atm is 125 kg m 3 and the viscosity is 3 x 10 6 Pa s. As we would anticipate, cooling increases the viscosity until He II is formed. Cooling this form reduces the viscosity so that close to 0 K a liquid with zero viscosity is produced. The vibrational motion of the helium atoms is about the same or a little larger than the mean interatomic spacing and the flow properties cannot be considered in classical terms. Only a quantum mechanical description is satisfactory. We can consider this condition to give the limit of De-+ 0 because we have difficulty in defining a relaxation when we have the positional uncertainty for the structural components. [Pg.80]

Thnnelling has sometimes been regarded as a mysterious phenomenon by chemists. It is worth stressing, therefore, that tunnelling has the same firm foundation in quantum mechanics as zero-point energy, which is the most important component of a KIE both these phenomena are a consequence of Heisenberg s uncertainty principle. [Pg.212]


See other pages where Quantum mechanical uncertainty is mentioned: [Pg.423]    [Pg.423]    [Pg.1066]    [Pg.1067]    [Pg.304]    [Pg.7]    [Pg.1035]    [Pg.611]    [Pg.692]    [Pg.693]    [Pg.787]    [Pg.209]    [Pg.145]    [Pg.146]    [Pg.458]    [Pg.56]    [Pg.79]    [Pg.371]    [Pg.311]    [Pg.418]    [Pg.473]    [Pg.37]    [Pg.47]    [Pg.275]    [Pg.7]    [Pg.81]    [Pg.121]    [Pg.40]    [Pg.245]    [Pg.254]   
See also in sourсe #XX -- [ Pg.463 ]




SEARCH



Quantum mechanical model uncertainty principle

Quantum mechanics Heisenberg uncertainty

Quantum mechanics uncertainty principle

Quantum uncertainty

© 2024 chempedia.info