Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Uncertainty momentum

Heisenburg uncertainty principle For small particles which possess both wave and particle. properties, it is impossible to determine accurately both the position and momentum of the particle simultaneously. Mathematically the uncertainty in the position A.v and momentum Ap are related by the equation... [Pg.201]

One feature of this inequality warrants special attention. In the previous paragraph it was shown that the precise measurement of A made possible when v is an eigenfiinction of A necessarily results in some uncertainty in a simultaneous measurement of B when the operators /land fido not conmuite. However, the mathematical statement of the uncertainty principle tells us that measurement of B is in fact completely uncertain one can say nothing at all about B apart from the fact that any and all values of B are equally probable A specific example is provided by associating A and B with the position and momentum of a particle moving along the v-axis. It is rather easy to demonstrate that [p, x]=- ih, so that If... [Pg.16]

We will refer to this model as to the semiclassical QCMD bundle. Eqs. (7) and (8) would suggest certain initial conditions for /,. However, those would not include any momentum uncertainty, resulting in a wrong disintegration of the probability distribution in g as compared to the full QD. Eor including an initial momentum uncertainty, a Gaussian distribution in position space is used... [Pg.385]

In a way, the limit set is thus the entire funnel between the two extreme cases qlc, and g o, Fig. 5. This effect is called Takens-chaos, [21, 5, 7]. As a consequence of this theorem each momentum uncertainty effects a kind of disintegration" process at the crossing. Thus, one can reasonably expect to reproduce the true excitation process by using QCMD trajectory bundles for sampling the funnel. To realize this idea, we have to study the full quantum solution and compare it to suitable QCMD trajectory bundles. [Pg.390]

The uncertainty principle, according to which either the position of a confined microscopic particle or its momentum, but not both, can be precisely measured, requires an increase in the carrier energy. In quantum wells having abmpt barriers (square wells) the carrier energy increases in inverse proportion to its effective mass (the mass of a carrier in a semiconductor is not the same as that of the free carrier) and the square of the well width. The confined carriers are allowed only a few discrete energy levels (confined states), each described by a quantum number, as is illustrated in Eigure 5. Stimulated emission is allowed to occur only as transitions between the confined electron and hole states described by the same quantum number. [Pg.129]

Of the variety of quantum effects which are present at low temperatures we focus here mainly on delocalization effects due to the position-momentum uncertainty principle. Compared to purely classical systems, the quantum delocalization introduces fluctuations in addition to the thermal fluctuations. This may result in a decrease of phase transition temperatures as compared to a purely classical system under otherwise unchanged conditions. The ground state order may decrease as well. From the experimental point of view it is rather difficult to extract the amount of quantumness of the system. The delocahzation can become so pronounced that certain phases are stable in contrast to the case in classical systems. We analyze these effects in Sec. V, in particular the phase transitions in adsorbed N2, H2 and D2 layers. [Pg.80]

Notice that in this example, the speed of the packet is inversely proportional to the packet s spatial size. While there is certainly nothing unique about this particular representation, it is interesting to speculate, along with Minsky, whether it may be true that, just as the simultaneous information about position and momentum is fundamentally constrained by Heisenberg s uncertainty relation in the physical universe, so too, in a discrete CA universe, there might be a fundamental constraint between the volume of a given packet and the amount of information that can be encoded within it. [Pg.663]

The orientation of linear rotators in space is defined by a single vector directed along a molecular axis. The orientation of this vector and the angular momentum may be specified within the limits set by the uncertainty relation. In a rarefied gas angular momentum is well conserved at least during the free path. In a dense liquid it is a molecule s orientation that is kept fixed to a first approximation. Since collisions in dense gas and liquid change the direction and rate of rotation too often, the rotation turns into a process of small random walks of the molecular axis. Consequently, reorientation of molecules in a liquid may be considered as diffusion of the symmetry axis in angular space, as was first done by Debye [1],... [Pg.59]

The difficulty will not go away. Wave-particle duality denies the possibility of specifying the location if the linear momentum is known, and so we cannot specify the trajectory of particles. If we know that a particle is here at one instant, we can say nothing about where it will be an instant later The impossibility of knowing the precise position if the linear momentum is known precisely is an aspect of the complementarity of location and momentum—if one property is known the other cannot be known simultaneously. The Heisenberg uncertainty principle, which was formulated by the German scientist Werner Heisenberg in 1927, expresses this complementarity quantitatively. It states that, if the location of a particle is known to within an uncertainty Ax, then the linear momentum, p, parallel to the x-axis can be known simultaneously only to within an uncertainty Ap, where... [Pg.139]

FIGURE 1.22 A representation of the uncertainty principle, (a) The location ot the particle is ill defined and so the momentum of the particle (represented by the arrow) can be specified reasonably precisely, (b) The location of the particle is well defined, and so the momentum cannot be specified very precisely. [Pg.139]

The location and momentum of a particle are complementary that is, both the location and the momentum cannot be known simultaneously with arbitrary precision. The quantitative relation between the precision of each measurement is described by the Heisenberg uncertainty principle. [Pg.140]

Heisenberg uncertainty principle If the location of a particle is known to within an uncertainty Ax, then the linear momentum parallel to the x-axis can he known only to within an uncertainty Ap, where ApAx > till. Henderson-Hasselbalch equation An approximate equation for estimating the pH of a solution containing a conjugate acid and base. See also Section 11.2. Henry s constant The constant kH that appears in Henry s law. [Pg.952]

In this equation, the Greek letter delta, represents the uncertainties associated with the momentum p and the position q of a particle. The letter h is Planck s constant. The symbol > means greater than or equal to. Thus, the product of the uncertainty associated with the momentum and position of any particle must be greater... [Pg.27]

Uncertainty principle The principle developed by Werner Heisenberg that it is not possible to know the momentum and position of a particle with unlimited accuracy. [Pg.125]

Since a free particle is represented by the wave packet I (jc, i), we may regard the uncertainty Ajc in the position of the wave packet as the uncertainty in the position of the particle. Likewise, the uncertainty Ak in the wave number is related to the uncertainty Aj3 in the momentum of the particle by Ak = hsp/h. The uncertainty relation (1.23) for the particle is, then... [Pg.21]

The Heisenberg uncertainty principle is a consequence of the stipulation that a quantum particle is a wave packet. The mathematical construction of a wave packet from plane waves of varying wave numbers dictates the relation (1.44). It is not the situation that while the position and the momentum of the particle are well-defined, they cannot be measured simultaneously to any desired degree of accuracy. The position and momentum are, in fact, not simultaneously precisely defined. The more precisely one is defined, the less precisely is the other, in accordance with equation (1.44). This situation is in contrast to classical-mechanical behavior, where both the position and the momentum can, in principle, be specified simultaneously as precisely as one wishes. [Pg.22]

The Heisenberg position-momentum uncertainty principle (3.82) agrees with equation (2.26), which was derived by a different, but mathematically... [Pg.101]

The position, momentum, and energy are all dynamical quantities and consequently possess quantum-mechanical operators from which expectation values at any given time may be determined. Time, on the other hand, has a unique role in non-relativistic quantum theory as an independent variable dynamical quantities are functions of time. Thus, the uncertainty in time cannot be related to a range of expectation values. [Pg.103]

Werner Heisenberg (1901-1976 Nobel Prize for physics 1932) developed quantum mechanics, which allowed an accurate description of the atom. Together with his teacher and friend Niels Bohr, he elaborated the consequences in the "Copenhagen Interpretation" — a new world view. He found that the classical laws of physics are not valid at the atomic level. Coincidence and probability replaced cause and effect. According to the Heisenberg Uncertainty Principle, the location and momentum of atomic particles cannot be determined simultaneously. If the value of one is measured, the other is necessarily changed. [Pg.26]

In classical mechanics both the position of a particle and its velocity at any given instant can be determined with as much accuracy as the experimental procedure allows. However, in 1927 Heisenberg introduced the idea that the wave nature of matter sets limits to the accuracy with which these properties can be measured simultaneously for a very small particle such as an electron. He showed that Ax, the product of the uncertainty in the measurement of the position x, and Ap, the uncertainty in the measurement of the momentum p, can never be smaller than M2tt ... [Pg.53]

If we increase the accuracy with which the position of the electron is determined by decreasing the wavelength of the light that is used to observe the electron, then the photon has a greater momentum, since p = hiA. The photon can then transfer a larger amount of momentum to the electron, and so the uncertainty in the momentum of the electron increases. Thus any reduction in the uncertainty in the position of the electron is accompanied by an increase in the uncertainty in the momentum of the electron, in accordance with the uncertainty principle relationship. We may summarize by saying that there is no way of accurately measuring simultaneously both the position and velocity of an electron the more closely we attempt to measure its position, the more we disturb its motion and the less accurately therefore we are able to define its velocity. [Pg.53]

Uncertainty principle Quantum mechanics restricts the knowledge of certain pairs of variables, notably time and energy and position and momentum, so that complete... [Pg.316]

For matter waves hk is the particle momentum and the uncertainty relation AxAp > h/2, known as the Heisenberg uncertainty principle. [Pg.119]


See other pages where Uncertainty momentum is mentioned: [Pg.959]    [Pg.115]    [Pg.1035]    [Pg.209]    [Pg.486]    [Pg.139]    [Pg.145]    [Pg.468]    [Pg.80]    [Pg.27]    [Pg.22]    [Pg.22]    [Pg.45]    [Pg.50]    [Pg.101]    [Pg.102]    [Pg.185]    [Pg.79]    [Pg.54]    [Pg.311]    [Pg.34]    [Pg.187]    [Pg.14]    [Pg.15]    [Pg.15]    [Pg.275]    [Pg.42]    [Pg.264]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



Momentum, uncertainty principle

Uncertainty principle position-momentum

Uncertainty relation coordinate-momentum

© 2024 chempedia.info