Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultrafast time-resolved absorption measurement

An ultrafast time-resolved near- and mid-IR absorption spectrometer was designed to achieve high sensitivity, ultrafast time resolution, and broad tunability in the near- and mid-IR regions (see Fig. 2). The details of this spectrometer are described elsewhere (9). Briefly, MbCO was photolyzed with a linearly polarized laser pulse, whose polarization direction was controlled electronically by a liquid crystal polarization rotator. The photolyzed sample was probed with an optically delayed, linearly polarized IR pulse whose transmitted intensity was spectrally resolved with a monochromator and detected with either a Si photodiode (near-IR RilO cm-1 bandpass) or a liquid nitrogen-cooled InSb photodetector (mid-IR 3 cm-1 bandpass). To measure the sample transmission, this signal was divided by a corresponding signal from a reference IR pulse... [Pg.207]

In ultrafast, time-resolved infrared absorption measurements by the pump-probe method, the sample is first excited by an ultrashort pump pulse, and then irradiated by an ultrashort infrared pulse (probe pulse) after a certain delay time from the excitation by the pump pulse. The delay time of the probe pulse from the pump pulse is usually changed by the difference in the optical path lengths of the pump and probe pulses (a delay time of 1 ps arises from a path difference of about 0.3 mm). When the infrared spectrum of a molecule in an excited electronic state is measured, pulses in the ultraviolet to visible region are used for the pump purpose, and pulses in the infrared region are used for the probe purpose. When a vibrationally excited molecule is the target of such a measurement, pulses in the infrared region are used for both the pump and probe purposes. The transient (or time-resolved) infrared absorption spectra by this method are usually measured as the difference in absorption intensities for the probe pulses between the measurements with the pump pulses and those without the pump pulses. [Pg.298]

Time-resolved X-ray absorption is a very different class of experiments [5-7]. Chemical reactions are triggered by an ultrafast laser pulse, but the laser-induced change in geometry is observed by absorption rather than diffraction. This technique permits one to monitor local rather than global changes in the system. What one measures in practice is the extended X-ray absorption fine structure (EXAFS), and the X-ray extended nearedge strucmre (XANES). [Pg.273]

When an electron is injected into a polar solvent such as water or alcohols, the electron is solvated and forms so-called the solvated electron. This solvated electron is considered the most basic anionic species in solutions and it has been extensively studied by variety of experimental and theoretical methods. Especially, the solvated electron in water (the hydrated electron) has been attracting much interest in wide fields because of its fundamental importance. It is well-known that the solvated electron in water exhibits a very broad absorption band peaked around 720 nm. This broad absorption is mainly attributed to the s- p transition of the electron in a solvent cavity. Recently, we measured picosecond time-resolved Raman scattering from water under the resonance condition with the s- p transition of the solvated electron, and found that strong transient Raman bands appeared in accordance with the generation of the solvated electron [1]. It was concluded that the observed transient Raman scattering was due to the water molecules that directly interact with the electron in the first solvation shell. Similar results were also obtained by a nanosecond Raman study [2]. This finding implies that we are now able to study the solvated electron by using vibrational spectroscopy. In this paper, we describe new information about the ultrafast dynamics of the solvated electron in water, which are obtained by time-resolved resonance Raman spectroscopy. [Pg.225]

To study the excited state one may use transient absorption or time-resolved fluorescence techniques. In both cases, DNA poses many problems. Its steady-state spectra are situated in the near ultraviolet spectral region which is not easily accessible by standard spectroscopic methods. Moreover, DNA and its constituents are characterised by extremely low fluorescence quantum yields (<10 4) which renders fluorescence studies particularly difficult. Based on steady-state measurements, it was estimated that the excited state lifetimes of the monomeric constituents are very short, about a picosecond [1]. Indeed, such an ultrafast deactivation of their excited states may reduce their reactivity something which has been referred to as a "natural protection against photodamage. To what extent the situation is the same for the polymeric DNA molecule is not clear, but longer excited state lifetimes on the nanosecond time scale, possibly of excimer like origin, have been reported [2-4],... [Pg.471]

By using transient absorption spectroscopic techniques, time-resolved measurements of photo-induced interfacial ET with time-constants shorter than 100 fsec have become possible [51,52,58-60]. When ultrashort laser pulses are used in studying PIET, vibrational coherences (or vibrational wave packet) can often be observed and have indeed been observed in a number of dye-sensitized solar cell systems. This type of quantum beat has also been observed in ultrafast PIET in photosynthetic reaction center [22], It should be noted that when the PIET takes place in the time scale shorter than 100 fsec, vibrational relaxation between the system and the heat bath is slower than PIET this is the so-called vibrationally non-relaxed ET case, and it will be treated in this section. [Pg.156]

Transient terahertz spectroscopy Time-resolved terahertz (THz) spectroscopy (TRTS) has been used to measure the transient photoconductivity of injected electrons in dye-sensitised titanium oxide with subpicosecond time resolution (Beard et al, 2002 Turner et al, 2002). Terahertz probes cover the far-infrared (10-600 cm or 0.3-20 THz) region of the spectrum and measure frequency-dependent photoconductivity. The sample is excited by an ultrafast optical pulse to initiate electron injection and subsequently probed with a THz pulse. In many THz detection schemes, the time-dependent electric field 6 f) of the THz probe pulse is measured by free-space electro-optic sampling (Beard et al, 2002). Both the amplitude and the phase of the electric field can be determined, from which the complex conductivity of the injected electrons can be obtained. Fitting the complex conductivity allows the determination of carrier concentration and mobility. The time evolution of these quantities can be determined by varying the delay time between the optical pump and THz probe pulses. The advantage of this technique is that it provides detailed information on the dynamics of the injected electrons in the semiconductor and complements the time-resolved fluorescence and transient absorption techniques, which often focus on the dynamics of the adsorbates. A similar technique, time-resolved microwave conductivity, has been used to study injection kinetics in dye-sensitised nanocrystalline thin films (Fessenden and Kamat, 1995). However, its time resolution is limited to longer than 1 ns. [Pg.643]

A ps absorption-emission spectrometer design which uses both pump-probe and streak camera measurement with a single-mode locked Nd-YAG laser has been described in detail.The theory of non-stationary time-dependent emission measurement and its application to ultrafast processes has been exemplified by analysis of data on the fs time-resolved emission from dye molecules in water.The power of this experimental technique is exemplified by the... [Pg.5]

Laser-induced fluorescence data provide a wide variety of detailed information about physical and chemical reactions. Laser-based time-resolved (picosecond) fluorescence spectroscopic techniques have been used to investigate the mechanism of photo-stabilisation by UVAs such as benzophenones, ben-zotriazoles and polymer-bound UV stabilisers [117]. Such ultrafast spectroscopic measurements can provide insight into the dynamics of the primary energy dissipation processes in polymers and polymer additives following light absorption. Excimer LIF spectra of plasticised PVC showed two distinct regions... [Pg.344]


See other pages where Ultrafast time-resolved absorption measurement is mentioned: [Pg.242]    [Pg.1968]    [Pg.528]    [Pg.230]    [Pg.227]    [Pg.296]    [Pg.604]    [Pg.230]    [Pg.638]    [Pg.1968]    [Pg.227]    [Pg.296]    [Pg.155]    [Pg.224]    [Pg.46]    [Pg.244]    [Pg.519]    [Pg.533]    [Pg.284]    [Pg.15]    [Pg.229]    [Pg.162]    [Pg.227]    [Pg.22]    [Pg.18]    [Pg.25]    [Pg.198]    [Pg.168]    [Pg.197]    [Pg.151]    [Pg.3780]    [Pg.229]    [Pg.647]    [Pg.289]    [Pg.122]    [Pg.1278]    [Pg.112]    [Pg.20]   
See also in sourсe #XX -- [ Pg.82 , Pg.83 ]




SEARCH



Absorption time

Measurable absorption

Measuring time

Resolved Measurements

Time measurement

Time-resolved absorption

Time-resolved absorption measurements

Ultrafast

© 2024 chempedia.info