Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tsuji-Trost reaction complexes

The Tsuji-Trost reaction is the palladium-catalyzed allylation of nucleophiles [110-113]. In an application to the formation of an A-glycosidic bond, the reaction of 2,3-unsaturated hexopyranoside 97 and imidazole afforded A-glycopyranoside 99 regiospecifically at the anomeric center with retention of configuration [114], Therefore, the oxidative addition of allylic substrate 97 to Pd(0) forms the rc-allyl complex 98 with inversion of configuration, then nucleophilic attack by imidazole proceeds with a second inversion of configuration to give 99. [Pg.23]

For further details of this reaction, the reader is referred to Chapter 9. The catalytic allylation with nucleophiles via the formation of Ti-allyl metal intermediates has produced synthetically useful compounds, with the palladium-catalyzed reactions being known as Tsuji-Trost reactions [31]. The reactivity of Ti-allyl-iridium complexes has been widely studied [32] for example, in 1997, Takeuchi idenhfied a [lrCl(cod)]2 catalyst which, when combined with P(OPh)3, promoted the allylic alkylation of allylic esters 74 with sodium diethyl malonate 75 to give branched... [Pg.260]

The efficient catalytic cycle is ascribed to the characteristic feature that Pd(0) is more stable than Pd(II). Reactions of 7t-allylpalladium complexes with carbon nucleophiles are called Tsuji Trost reactions. In addition to Pd, other transition metal complexes, such as those of Mo [26], Rh [27] and other metals, are used for catalytic allylation. [Pg.116]

Another important aspect of the Tsuji-Trost reaction is the stereochemistry. The representation of the r -allylpalladium complex of formula 4 is an oversimplification. In reality, i73-allylpalladium complexes are square-planar, as indicated by formulas 10 and 11 in Scheme 4, the two auxiliary ligands L being placed approximately near the two vertical parallel planes... [Pg.76]

The Pd(0)-catalyzed allylation of 96 with acrolein dimethyl acetal gives exclusively compound 104. The 7j3-allylpalladium cationic complex (4, R = OMe) is attacked only at the center bearing the substituent MeO (80SC147), thus emphasizing the importance not only of steric effects in the electrophile but also of the electronic effects in the Tsuji-Trost reaction (92T1695). Indole 96 has been also allylated with epoxide 105 under Pd(0) catalysis by Trost and Molander (81JA5969). The intermediate cationic complex is attacked at the exocyclic position, 106 being formed, as shown in Scheme 22. [Pg.92]

A wide variety of nucleophiles add to an -rf-allyl ligand. Desirable nucleophiles typically include stabilized carbanions such as CH(COOR)2 or 1° and II0 amines. Unstabilized nucleophiles such as MeMgBr or MeLi often attack the metal first and then combine with the n-allyl by reductive elimination. The Tsuji-Trost reaction, which is typified by the addition of stabilized carbanions to T 3—allyl ligands complexed to palladium followed by loss of the resulting substituted alk-ene, comprises an extremely useful method of constructing new C-C bonds, and many applications of this reaction have appeared in the literature.61 Equation 8.43 illustrates an example of a Pd-catalyzed addition of a stabilized enolate to an allyl acetate.62 The initial step in the catalytic cycle is oxidative addition of the allyl acetate to the Pd(0) complex, followed by nq1 to nq3—allyl isomerization, and then attack by the nucleophile to a terminal position of the T 3—allyl ligand. We will discuss the Tsuji-Trost reaction, especially in regard to its utility in chiral synthesis,63 more extensively in Chapter 12. [Pg.280]

The Tsuji-Trost reaction is the Pd-catalyzed allylation of nucleophiles [105] with allylic halides, acetates, carbonates, etc. This transformation proceeds via intermediate allylpalladium complexes (e.g. 110), and typically proceeds with overall retention of stereochemistry. In addition, the trapping of the intermediate allylpalladium complex usually occurs at the least hindered carbon. A representative example of this transformation is shown below in an application to the formation of an 7V-glycosidic bond. Treatment of 2,3-unsaturated hexopyranoside 109 with imidazole in the presence of a Pd(0) catalyst... [Pg.25]

An ingenious extension of the Tsuji-Trost reaction was the cornerstone of Oppolzer s enantioselective synthesis of a heteroyohimbine alkaloid, (-t-j-B-isorauniticine (267) [117]. Substrate 263 was prepared from a commercially available glycinate equivalent by Malkylation, installation of the sultam chiral auxiliary followed by a sultam-directed C-alkylation. As illustrated in Scheme 48, the crucial double cyclization was accomplished by the treatment of 263 with Pd(dba), Bu,P, in the presence of carbon monoxide (1 atm) in acetic acid to give enone 264 and two other stereoisomers in a 67 22 11 ratio. In this case, an allyl carbonate, rather than an allyl acetate, was used as the allyl precursor. Since carbonate is an irreversible leaving group, formation of the n-allylpalladium complex occurs readily. In the presence of Pd(0), the allylic carbonate is converted into a n-allylpalladium complex with concurrent release of CO, and... [Pg.489]

Palladium-catalyzed reactions have been widely investigated and have become an indispensable synthetic tool for constructing carbon-carbon and carbon-heteroatom bonds in organic synthesis. Especially, the Tsuji-Trost reaction and palladium(II)-catalyzed cyclization reaction are representative of palladium-catalyzed reactions. These reactions are based on the electrophilic nature of palladium intermediates, such as n-allylpalladium and (Ti-alkyne)palladium complexes. Recently, it has been revealed that certain palladium intermediates, such as bis-7i-allylpalladium, vinylpalladium, and arylpalladium, act as a nucleophile and react with electron-deficient carbon-heteroatom and carbon-carbon multiple bonds [1]. Palladium-catalyzed nucleophilic reactions are classified into three categories as shown in Scheme 1 (a) nucleophilic and amphiphilic reactions of bis-n-allylpalladium, (b) nucleophilic reactions of allylmetals, which are catalytically generated from n-allylpalladium, with carbon-heteroatom double bonds, and (c) nucleophilic reaction of vinyl- and arylpalladium with carbon-heteroatom multiple bonds. According to this classification, recent developments of palladium-catalyzed nucleophilic reactions are described in this chapter. [Pg.212]

Mechanistic consideration of the Wacker reaction, which is thought to involve nucleophilic attach of ethylene complexed with Pd by HjO, led to the discovery of a carbon-carbon bond-forming reaction of 1,5-cyclooctadiene-Pd ir-complex with ethyl malonate in the presence of Na2C03 by Tsuji et al. in 1965 ° (Scheme 3). Re-searchers admit that an analogy between the organopalladium derivatives in Scheme 3 and TT-allylpalladium complexes was drawn and exploited in the discovery of the reaction of TT-allylpalladium with malonate also in 1965 (Scheme 4). It is noteworthy that this reaction remained only stoichiometric in Pd for several years. Once its catalytic version f was developed, however, this reaction has been extensively developed by Tsuji,Trost, " and many others, as detailed in Sect. V.2. Today, it is widely referred to as the Tsuji-Trost reaction, and it represents one of the most widely investigated areas of the organopalladium chemistry (Scheme 4). [Pg.12]

Organometals, enolates, and metal hydrides used throughout this Handbook, especially in CTOSS-conphng and related reactions (Part HI) and the Tsuji-Trost reaction (Part V), can, in general, readily rednce Pd(ll) complexes via transmetaUation-reductive elimination, as shovra in Scheme 7. [Pg.37]

Two crucial requirements for any catalytic reactions are (i) that the overall catalytic processes be thermodynamically favorable (i.e., AAG<0) and (ii) that all steps in a given catalytic cycle be kinetically accessible (i.e., of reasonably low activation energies). Moreover, so long as these two requirements are met, one or more of the microsteps in a catalytic cycle can be thermodynamically unfavorable. This is an obvious principle that nonetheless is frequently misunderstood. For example, the stoichiometric oxidative addition reaction of allyl acetate with Pd(0) complexes does not normally give the desired allylpalladium derivative in significant yields, and it may well be thermodynamically unfavorable. And yet, the Tsuji-Trost reaction of allyl acetate with malonates is normally facile. It is very important not to rule out any potentially feasible catalytic processes simply because some microsteps are or appear to be thermodynamically unfavorable. [Pg.39]

The reactions of 7r-allylpaUadium complexes are dominated by the nucleophilic attack on the TT-allyl ligand. A well-known example is the stoichiometric version of the Tsuji-Trost reaction (Scheme 20). ... [Pg.161]

With ample supplies of 38 provided through this protocol, the Sorensen group could next attempt to attach the atoms needed to prepare 37, the projected intermediate for a second reaction based on 7T-allyl palladium complexes (a Tsuji—Trost reaction) that would hopefully lead to the 19-membered macrocycle 36. In essence, this requirement boiled down to only two key synthetic objectives generating a ketoester moiety from the Weinreb amide, and converting the allylic TES-protected alcohol function at Cl into a methyl carbonate. Neither of these tasks ultimately proved to be overly challenging to carry out, with the first accomplished by treating 38 with excess quantities of the lithium enolate of t-butyl acetate to provide 54, and the second requiring three rela-... [Pg.495]

The Pd-catalysed allylation of carbon nucleophiles with allylic compounds via Jt-aUylpaUadium complexes is called the Tsuji-Trost reaction [32]. Typically, an allyl acetate or carbonate (54) reacts with a Pd-catalyst resulting in displacement of the leaving group to generate a Jt-allylpalladium complex (55) that can undergo substitution by a nucleophile (56) (Scheme 4.14). In 1965, Tsuji reported the reaction of ti-aUylpaUadium chloride with nucleophiles such as enamines and anions of diethyl malonate and ethyl acetoacetate. A catalytic variant was soon reported thereafter in the synthesis of allylic amines [33]. In 1973, Trost described the alkylation of alkyl-substituted 7i-aUylpalladium complexes with methyl methylsulfonylacetate... [Pg.67]

As an alternative to this electrophilic activation/heterocyclization, Pd(0)-catalyzed intramolecular Tsuji—Trost reactions have been reported for the synthesis of THPs. For instance, in the presence of a Pd(0) complex and Trost s ligand [(R,R)-diphenylphosphino benzoic acid (DPPBA)]... [Pg.115]

Palladium-catalyzed allylic substitution reactions, known as Tsuji-Trost reactions, are a well-established method for carbon-carbon bond forming processes [48]. The generally accepted mechanism for this reaction involves the oxidative addition of the allylic substrate to Pd(0) to provide a Jt-allylpalladium complex. The subsequent reaction of the electrophilic 7t-allylpalladium complex with the nucleophile affords the substituted product and Pd(0), which is regenerated to start the catalytic cycle (Scheme 7.26). [Pg.260]

The catalytic version of allylation of nucleophiles via 7r-allylpaUadium intermediates was discovered in 1970 using allylic esters and aUyl phenyl ethers as substrates (Scheme Formation of 7r-allylpaUadium complexes by oxidative addition of various allylic compounds to Pd(0) and subsequent reaction of electrophilic rr-allylpalladium complexes with soft carbon nucleophiles are the basis of the catalytic allylation. After the reaction, Pd(0) is regenerated, which undergoes oxidative addition to the allylic compounds again, making the whole reaction catalytic. The efficient catalytic cycle is ascribed to the characteristic feature that Pd(0) is more stable than Pd(II). Allylation of carbon nucleophiles with allyhc compounds via TT-allylpalladium complexes is called the Tsuji-Trost reaction. The reaction has wide synthetic applications, particularly for cyclization. " ... [Pg.41]


See other pages where Tsuji-Trost reaction complexes is mentioned: [Pg.7]    [Pg.368]    [Pg.116]    [Pg.802]    [Pg.458]    [Pg.556]    [Pg.618]    [Pg.726]    [Pg.2]    [Pg.217]    [Pg.217]    [Pg.212]    [Pg.256]    [Pg.180]    [Pg.215]    [Pg.1686]    [Pg.428]    [Pg.428]    [Pg.333]    [Pg.20]    [Pg.301]   
See also in sourсe #XX -- [ Pg.161 , Pg.162 ]




SEARCH



Tsuji

Tsuji-Trost reaction reactions

© 2024 chempedia.info