Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tryptophan localization

Alleniativdy. das fraction can be fdattd to the an (8 through which tiie tryptophan locales before strikiiig an energy barrier... [Pg.675]

Appllca.tlons. Various A/-derivatives of amino acids (qv) are resolvable on BSA columns. These /V-amino acid derivatives include ben2enesulfonyl-, phthalimido-, S-dimethylarnino-l-naphthalenesulfonyl- (DANSYL-), 2,4-dinitrophenyl- (DNP-), and 2,3,6-trinitrophenyl- (TNP-) derivatives (30). Amines such as Prilocain, ( )-2-(prop5lamino)-(9-propiono-toluidide, a local anesthetic (Astra Pharm. Co.), are also resolved on BSA. The aromatic amino acids DL-tryptophan, 5-hydroxy-DL-tryptophan, DL-kynurenine [343-65-7] C qH 2N 2 3 3-hydroxy-DT.-kynurenine [484-78-6] and dmgs... [Pg.100]

Soltes, L., Sebille, B. (1997). Reversible binding interactions between the tryptophan enantiomers and albumins of different animal species as determined by novel high performance liquid chromatographic methods an attempt to localize the d- and L-tryptophan binding sites on the human serum albumin polypeptide chain by using protein fragments. Chirality 9, 373-379. [Pg.343]

Fig. 3 Transition energy for S0 — Sj (red) and S0 — CT(black) for a tryptophan during a 2 ns QM-MM trajectory of the human eye lens protein yD-crystallin showing typical fluctuations due to rapid changes in local electrostatic potentials at the atoms of the chromophore. This Trp has a low quantum yield because the CT state is near the Sj state much of the time. Heterogeneity in lifetime and wavelength are evident in both states because regions of 100 ps are seen having distinctly different average energies... Fig. 3 Transition energy for S0 — Sj (red) and S0 — CT(black) for a tryptophan during a 2 ns QM-MM trajectory of the human eye lens protein yD-crystallin showing typical fluctuations due to rapid changes in local electrostatic potentials at the atoms of the chromophore. This Trp has a low quantum yield because the CT state is near the Sj state much of the time. Heterogeneity in lifetime and wavelength are evident in both states because regions of 100 ps are seen having distinctly different average energies...
In the resonance Raman spectra of GO0X (125), vibrational modes have been assigned to both the tyrosinate ligand (Tyr 495) as well as the tyrosyl radical (Tyr 272). The spectrum does not provide evidence for the speculation that the tyrosyl radical is delocalized onto the jr-stacked tryptophan residue (Trp 290) (126, 127). Recent results of high-frequency EPR measurement (30) on the apogalactose oxidase radical are also consistent with the radical spin density being localized on the modified Tyr 272 moiety only. [Pg.163]

Tyrosine fluorescence emission in proteins and polypeptides usually has a maximum between 303 and 305 nm, the same as that for tyrosine in solution. Compared to the Stokes shift for tryptophan fluorescence, that for tyrosine appears to be relatively insensitive to the local environment, although neighboring residues do have a strong effect on the emission intensity. While it is possible for a tyrosine residue in a protein to have a higher quantum yield than that of model compounds in water, for example, if the phenol side chain is shielded from solvent and the local environment contains no proton acceptors, many intra- and intermolecular interactions result in a reduction of the quantum yield. As discussed below, this is evident from metal- and ionbinding data, from pH titration data, and from comparisons of the spectral characteristics of tyrosine in native and denatured proteins. [Pg.22]

INTRINSIC AND EXTRINSIC FLUORESCENCE. Intrinsic fluorescence refers to the fluorescence of the macromolecule itself, and in the case of proteins this typically involves emission from tyrosinyl and tryptopha-nyl residues, with the latter dominating if excitation is carried out at 280 nm. The distance for tyrosine-to-tryp-tophan resonance energy transfer is approximately 14 A, suggesting that this mode of tyrosine fluorescence quenching should occur efficiently in most proteins. Moreover, tyrosine fluorescence is quenched whenever nearby bases (such as carboxylate anions) accept the phenolic proton of tyrosine during the excited state lifetime. To examine tryptophan fluorescence only, one typically excites at 295 nm, where tyrosine weakly absorbs. [Note While the phenolate ion of tyrosine absorbs around 293 nm, its high pXa of 10-11 in proteins typically renders its concentration too low to be of practical concern.] The tryptophan emission is maximal at 340-350 nm, depending on the local environment around this intrinsic fluorophore. [Pg.288]

A DSC investigation describe the global changes of the protein as a function of tempearture. A fluorescence experiment which report the response of a single tryptophane residue is essentially a local measurement of the environment around the tryptophane. [Pg.306]

Friguet, B., Fedorov, A. N, and Djavadi-Ohaniance, L. (1993) In vitro gene expression for the localization of antigenic determinants—application to the E coll tryptophan synthase beta2 subunit. J Immunol Methods 158, 243—249. [Pg.172]

The intrinsic UV fluorescence of proteins is dominated by the tryptophan indole rings. The absorption maximum is 280-290 nm with the fluorescence maximum ranging from 315-355 nm, depending on the local environment of the indole side-chains. Quantum yields range from 0.04 to 0.50 0.10 is a common value. As the local environment polarity or dielectric constant increases, the fluorescence maximum shifts up to 355 nm, such as for an indole ring in water or buffer. Trp moieties in highly hydro-phobic environments fluoresce at 315-320 nm. Thus the fluorescence emission maximum (and the quantum yield) provide indirect information as to the local environment of the Trp fluors. [Pg.34]

A kinetic study of the photosensitized oxidation of tryptophan-alkyl esters in Triton X-100 micellar solutions has been carried out by Criado et al. [24], The results obtained are presented in Table 6. These data show an important decrease in the relevance of the photo-oxidative pathway in the esterified compounds in the presence of the micelles. The magnitude of the effect seems to be extremely sensitive to the location of the probe, increasing as the length of the ester hydrocarbon chain increases. These results are interpreted in terms of the competition between the local oxygen concentration and the solvent micropolarity effect that... [Pg.301]


See other pages where Tryptophan localization is mentioned: [Pg.223]    [Pg.223]    [Pg.187]    [Pg.200]    [Pg.70]    [Pg.1120]    [Pg.100]    [Pg.270]    [Pg.79]    [Pg.160]    [Pg.57]    [Pg.326]    [Pg.57]    [Pg.236]    [Pg.12]    [Pg.256]    [Pg.59]    [Pg.135]    [Pg.161]    [Pg.427]    [Pg.4]    [Pg.139]    [Pg.199]    [Pg.291]    [Pg.77]    [Pg.178]    [Pg.42]    [Pg.81]    [Pg.173]    [Pg.238]    [Pg.34]    [Pg.200]    [Pg.154]    [Pg.154]    [Pg.257]    [Pg.181]    [Pg.303]    [Pg.70]    [Pg.24]    [Pg.85]   
See also in sourсe #XX -- [ Pg.527 ]




SEARCH



© 2024 chempedia.info