Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tryptophan hydrolysis

C11H12N2O2. M.p. 289°C. L-Tryptophan is an essential amino-acid, its presence in the food of animals is necessary for proper growth. It is present in small quantities in the hydrolysis products of most proteins, although absent in certain vegetable proteins. [Pg.408]

One effective method for synthesis of tryptophan derivatives involves alkylation of formamido- or acetamido- malonate diesters by gramine[l,2]. Conversion to tryptophans is completed by hydrolysis and decarboxylation. These reactions were discussed in Chapter 12. An enolate of an a-nitro ester is an alternative nucleophile. The products can be converted to tryptophans by rcduction[3,4],... [Pg.129]

Chymotrypsin (Section 27 10) A digestive enzyme that cat alyzes the hydrolysis of proteins Chymotrypsin selectively catalyzes the cleavage of the peptide bond between the car boxyl group of phenylalanine tyrosine or tryptophan and some other ammo acid... [Pg.1279]

Pish protein concentrate and soy protein concentrate have been used to prepare a low phenylalanine, high tyrosine peptide for use with phenylketonuria patients (150). The process includes pepsin hydrolysis at pH 1.5 ptonase hydrolysis at pH 6.5 to Hberate aromatic amino acids gel filtration on Sephadex G-15 to remove aromatic amino acids incubation with papain and ethyl esters of L-tyrosine and L-tryptophan, ie, plastein synthesis and ultrafiltration (qv). The plastein has a bland taste and odor and does not contain free amino acids. Yields of 69.3 and 60.9% from PPG and soy protein concentrate, respectively, have been attained. [Pg.471]

Enzymatic hydrolysis is also used for the preparation of L-amino acids. Racemic D- and L-amino acids and their acyl-derivatives obtained chemically can be resolved enzymatically to yield their natural L-forms. Aminoacylases such as that from Pispergillus OTj e specifically hydrolyze L-enantiomers of acyl-DL-amino acids. The resulting L-amino acid can be separated readily from the unchanged acyl-D form which is racemized and subjected to further hydrolysis. Several L-amino acids, eg, methionine [63-68-3], phenylalanine [63-91-2], tryptophan [73-22-3], and valine [72-18-4] have been manufactured by this process in Japan and production costs have been reduced by 40% through the appHcation of immobilized cell technology (75). Cyclohexane chloride, which is a by-product in nylon manufacture, is chemically converted to DL-amino-S-caprolactam [105-60-2] (23) which is resolved and/or racemized to (24)... [Pg.311]

The deterruination of amino acids in proteins requires pretreatment by either acid or alkaline hydrolysis. However, L-tryptophan is decomposed by acid, and the racemi2ation of several amino acids takes place during alkaline hydrolysis. Moreover, it is very difficult to confirm the presence of cysteine in either case. The use of methanesulfonic acid (18) and mercaptoethanesulfonic acid (19) as the protein hydroly2ing reagent to prevent decomposition of L-tryptophan and L-cysteine is recommended. En2ymatic hydrolysis of proteins has been studied (20). [Pg.272]

Protein Hydrolysis. Acid hydrolysis of protein by 6 MHQ in a sealed tube is generally used (110°C, 24-h). During hydrolysis, slight decomposition takes place in serine (ca 10%) and threonine (ca 5%). Cystine and tryptophan in protein cannot be deterruined by this method because of complete decomposition. [Pg.284]

For deterrnination of tryptophan, 4 M methanesulfonic acid hydrolysis is employed (18). For cystine, the protein is reduced with 2-mercaptoethanol, the resultant cysteine residue is carboxymethylated with iodoacetic acid, and then the protein sample is hydroly2ed. Also, a one-pot method with mercaptoethanesulfonic acid has been developed for tryptophan and cystine (19). [Pg.284]

Partial hydrolysis of a peptide can be carried out either chemically with aqueous acid or enzymatically. Acidic hydrolysis is unselective and leads to a more or less random mixture of small fragments, but enzymatic hydrolysis is quite specific. The enzyme trypsin, for instance, catalyzes hydrolysis of peptides only at the carboxyl side of the basic amino acids arginine and lysine chymotrypsin cleaves only at the carboxyl side of the aryl-substituted amino acids phenylalanine, tyrosine, and tryptophan. [Pg.1033]

Proteins have been hydrolyzed by treatment with sulfuric acid, hydrochloric acid, barium hydroxide, proteolytic enzymes, and other hydrolytic reagents, but no condition has been found which avoids some destruction or incomplete liberation of tryptophan, cystine, and some other amino acids. The early work on this problem has been reviewed by Mitchell and Hamilton (194). The literature and their own excellent experiments on the hydrolysis problem in relation to the liberation and destruction of tryptophan have been presented recently by Spies and Chambers (269). [Pg.23]

Transition state theory, 46,208 Transmission factor, 42,44-46,45 Triosephosphate isomerase, 210 Trypsin, 170. See also Trypsin enzyme family active site of, 181 activity of, steric effects on, 210 potential surfaces for, 180 Ser 195-His 57 proton transfer in, 146, 147 specificity of, 171 transition state of, 226 Trypsin enzyme family, catalysis of amide hydrolysis, 170-171. See also Chymotrypsin Elastase Thrombin Trypsin Plasmin Tryptophan, structure of, 110... [Pg.236]

Yamada, H., Moriya, H., and Tsugita, A., Development of an acid hydrolysis method with high recoveries of tryptophan and cysteine for microquantities of protein, Anal. Biochem., 198, 1, 1991. [Pg.275]

Kostic el al. discovered that Pd11 complexes, when attached to tryptophan residues, can rapidly cleave peptides in acetone solutions to which a stoichiometric amount of water is added, for hydrolysis.436 The indole tautomer in which a hydrogen has moved from the nitrogen to C(3) is named indolenine. Its palladium(II) complexes that are coordinated via the nitrogen atom have been characterized by X-ray crystallography and spectroscopic methods.451 Binuclear dimeric complexes between palladium(II) and indole-3-acetate involve cyclopalladation.452 Bidentate coordination to palladium(II) through the N(l) and the C(2) atoms occurs in binuclear complexes.453 Reactions of palladium(II) complexes with indole-3-acetamide and its derivatives produced new complexes of unusual structure. Various NMR, UV, IR, and mass spectral analyses have revealed bidentate coordination via the indole carbon C(3) and the amide oxygen.437... [Pg.594]

The highly regioselective hydrolysis of tryptophan-containing peptides with the [Pd(en)]2+ (en = H2NC2H4NH2) complex has been reported by Kostic and co-workers.436 The hydrolysis does not proceed without the palladium(II) complex. However, when equimolar amounts of a... [Pg.594]

Hydrolysis of allyl ester 201b was performed with diethylamine in the presence of Pd(PPh3)4. The carboxylic acid 201c thus obtained could be amidated with a tryptophan derivative using l-(3-dimethylaminopropyl)-3-ethylcarbodiimide as... [Pg.250]

Introduction of microbiological methods for the determination of amino acids made possible the estimation of the amount of both free and combined amino acids in urine. Dunn et al. (D4), Thompson and Kirby (Tl), Eckhard and Davidson (El), and Woodson et al. (W3) estimated the amount of amino acids liberated in the course of acid or, as in the case of tryptophan determination, alkaline hydrolysis. Microbiological and colorimetric methods used for the determination of certain amino acids present very little opportunity for evaluating the proper quantitative relations between free and combined amino acids, since under the applied condition both combined and free amino acids are equally involved in the reaction. In 1949 Albanese et al. (A3) applied such methods to the quantitative determination of free and combined amino acids in the nondiffusible fraction of urine, and subjected the procedures to broad criticism from just this point of view. [Pg.127]

The method of protein hydrolysis was important acid hydrolysis caused destruction of tryptophan but alkaline treatment gave even greater losses of other amino acids especially cystine. The amino acids were usually separated by then standard chemical procedures based on differences in solubility, selective precipitation by agents such as Reinecke salt (proline and hydroxyproline), or flavianic acid (arginine). [Pg.167]

With methods for the quantitative analysis of amino acids to hand, the way was now open for the determination of amino acid sequences. Purified bovine insulin was relatively freely available. On the basis of ultracentrifugal analysis (Gutfreund and Ogston), a molecular weight of 12,000 was assumed—as it later emerged, a factor of 2 too high. One of the advantages from the choice of insulin as the protein to sequence was that tryptophan is absent. A 100% recovery of the amino acids could therefore be obtained easily by simple hydrolysis with HC1. In 1948 Tristram reported the complete amino acid composition of the protein. [Pg.176]


See other pages where Tryptophan hydrolysis is mentioned: [Pg.29]    [Pg.1130]    [Pg.43]    [Pg.271]    [Pg.386]    [Pg.1130]    [Pg.112]    [Pg.14]    [Pg.16]    [Pg.239]    [Pg.402]    [Pg.224]    [Pg.525]    [Pg.100]    [Pg.166]    [Pg.2]    [Pg.593]    [Pg.595]    [Pg.141]    [Pg.31]    [Pg.153]    [Pg.212]    [Pg.241]    [Pg.243]    [Pg.244]    [Pg.186]    [Pg.34]    [Pg.135]    [Pg.99]    [Pg.1087]    [Pg.24]   
See also in sourсe #XX -- [ Pg.6 , Pg.424 ]




SEARCH



Tryptophan acid hydrolysis

Tryptophan alkaline hydrolysis

© 2024 chempedia.info