Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tritium elements

The ordinary isotope of hydrogen, H, is known as Protium, the other two isotopes are Deuterium (a proton and a neutron) and Tritium (a protron and two neutrons). Hydrogen is the only element whose isotopes have been given different names. Deuterium and Tritium are both used as fuel in nuclear fusion reactors. One atom of Deuterium is found in about 6000 ordinary hydrogen atoms. [Pg.5]

AH operating facilities shear the spent fuel elements into segments several centimeters long to expose the oxide pellets to nitric acid for dissolution. This operation is often referred to as chop-leach. The design and operation of the shear is of primary importance because (/) the shear can be the production botdeneck, and (2) the shear is the point at which tritium and fission gases are released. [Pg.204]

The neutrons in a research reactor can be used for many types of scientific studies, including basic physics, radiological effects, fundamental biology, analysis of trace elements, material damage, and treatment of disease. Neutrons can also be dedicated to the production of nuclear weapons materials such as plutonium-239 from uranium-238 and tritium, H, from lithium-6. Alternatively, neutrons can be used to produce radioisotopes for medical diagnosis and treatment, for gamma irradiation sources, or for heat energy sources in space. [Pg.210]

Any radioactive nucUde or isotope of an element can be used as a radioactive tracer, eg, chromium-51 [14392-02-0] cobalt-60 [10198-40-0] tin-110 [15700-33-1] and mercury-203 [13982-78-0],hut the preponderance ofuse has been for carbon-14 [14762-75-5],hydj ogen-3 [10028-17-8] (tritium), sulfur-35 [15117-53-0], phosphoms-32, and iodine-125 [14158-31 -7]. More recendy phosphoms-33 has become available and is used to replace sulfur-35 and phosphoms-32 in many appUcations. By far the greater number of radioactive tracers produced are based on carbon-14 and hydrogen-3 because carbon and hydrogen exist in a large majority of the known natural and synthetic chemical compounds. [Pg.437]

Production in Target Elements. Tritium is produced on a large scale by neutron irradiation of Li. The principal U.S. site of production is the Savaimah River plant near Aiken, South Carolina where tritium is produced in large heavy-water moderated, uranium-fueled reactors. The tritium may be produced either as a primary product by placing target elements of Li—A1 alloy in the reactor, or as a secondary product by using Li—A1 elements as an absorber for control of the neutron flux. [Pg.14]

Production in Fission of Heavy Elements. Tritium is produced as a minor product of nuclear fission (47). The yield of tritium is one to two atoms in 10,000 fissions of natural uranium, enriched uranium, or a mixture of transuranium nucHdes (see Actinides and transactinides Uranium). [Pg.15]

Production-Scale Processing. The tritium produced by neutron irradiation of Li must be recovered and purified after target elements are discharged from nuclear reactors. The targets contain tritium and He as direct products of the nuclear reaction, a small amount of He from decay of the tritium and a small amount of other hydrogen isotopes present as surface or metal contaminants. [Pg.15]

A special type of substituent effect which has proved veiy valuable in the study of reaction mechanisms is the replacement of an atom by one of its isotopes. Isotopic substitution most often involves replacing protium by deuterium (or tritium) but is applicable to nuclei other than hydrogen. The quantitative differences are largest, however, for hydrogen, because its isotopes have the largest relative mass differences. Isotopic substitution usually has no effect on the qualitative chemical reactivity of the substrate, but often has an easily measured effect on the rate at which reaction occurs. Let us consider how this modification of the rate arises. Initially, the discussion will concern primary kinetic isotope effects, those in which a bond to the isotopically substituted atom is broken in the rate-determining step. We will use C—H bonds as the specific topic of discussion, but the same concepts apply for other elements. [Pg.222]

However, the dry deposition rate for noble gases, tritium, carbon-14, and nonelemental radioiodine is so slow that this depletion mechanism is negligible within 50 miles of the release point. Elemental o radioiodine and other particulates are readily deposited. This transfer can be quantified as a transfer velocity (where concentration transfer velocity = deposition rate). The transfer velocity is proportional to windspeed and, as a consequence, the rate of depositirm is independent of windspeed since concentration in air is inversely proportional to windspeed. [Pg.322]

K. M. Mackay, The element hydrogen, Comprehensive Inorganic Chemistry, Vol. 1, Chap. 1. K. M. Mackay and M. F. A. Dove, Deuterium and tritium, ibid., Vol. 1, Chap. 3, Pergamon Press, Oxford, 1973. [Pg.34]

All atoms of a given element have the same number of protons, hence the same atomic number. They may, however, differ from one another in mass and therefore in mass number. This can happen because, although the number of protons in an atom of an element is fixed, the number of neutrons is not. It may vary and often does. Consider the element hydrogen (Z = 1). There are three different kinds of hydrogen atoms. They all have one proton in the nucleus. A light hydrogen atom (the most common type) has no neutrons in the nucleus (A = 1). Another type of hydrogen atom (deuterium) has one neutron (A = 2). Still a third type (tritium) has two neutrons (A = 3). [Pg.29]

Table IV presents the results of the determination of polyethylene radioactivity after the decomposition of the active bonds in one-component catalysts by methanol, labeled in different positions. In the case of TiCU (169) and the catalyst Cr -CjHsU/SiCU (8, 140) in the initial state the insertion of tritium of the alcohol hydroxyl group into the polymer corresponds to the expected polarization of the metal-carbon bond determined by the difference in electronegativity of these elements. The decomposition of active bonds in this case seems to follow the scheme (25) (see Section V). But in the case of the chromium oxide catalyst and the catalyst obtained by hydrogen reduction of the supported chromium ir-allyl complexes (ir-allyl ligands being removed from the active center) (140) C14 of the... Table IV presents the results of the determination of polyethylene radioactivity after the decomposition of the active bonds in one-component catalysts by methanol, labeled in different positions. In the case of TiCU (169) and the catalyst Cr -CjHsU/SiCU (8, 140) in the initial state the insertion of tritium of the alcohol hydroxyl group into the polymer corresponds to the expected polarization of the metal-carbon bond determined by the difference in electronegativity of these elements. The decomposition of active bonds in this case seems to follow the scheme (25) (see Section V). But in the case of the chromium oxide catalyst and the catalyst obtained by hydrogen reduction of the supported chromium ir-allyl complexes (ir-allyl ligands being removed from the active center) (140) C14 of the...
Because isotopes of the same element have the same number of protons and the same number of electrons, they have essentially the same chemical and physical properties. However, the mass differences between isotopes of hydrogen are comparable to the masses themselves, leading to noticeable differences in some physical properties and slight variations in some of their chemical properties. Hydrogen has three isotopes (Table B.2). The most common ( H) has no neutrons so its nucleus is a lone proton. The other two isotopes are less common but nevertheless so important in chemistry and nuclear physics that they are given special names and symbols. One isotope (2H) is called deuterium (D) and the other ( H) is called tritium (T). [Pg.43]

Aromatic dehalogenation suffers from the disadvantage that only 50% of the tritium is incorporated, the rest appearing as waste. This situation is even more marked for borotritide reductions but the problem can be overcome by using some of the new tritide reagents that have recently become available as a result of the synthesis of carrier-free lithium tritide (Scheme 13.1) [22], Their reactivity can be fine-tuned through the elements (e. g. B, Al, Sn) to which the tritium is attached and by the electronic and steric nature of the substituents at the central atom. [Pg.438]

Isotopes of hydrogen. Three isotopes of hydrogen are known H, 2H (deuterium or D), 3H (tritium or T). Isotope effects are greater for hydrogen than for any other elements (and this may by a justification for the different names), but practically the chemical properties of H, D and T are nearly identical except in matters such as rates and equilibrium constants of reactions (see Tables 5.1a and 5.1b). Molecular H2 and D2 have two forms, ortho and para forms in which the nuclear spins are aligned or opposed, respectively. This results in very slight differences in bulk physical properties the two forms can be separated by gas chromatography. [Pg.323]

Hydrogen The first chemical element in the periodic table. It has the atomic symbol H, atomic number 1, and atomic weight 1. It exists, under normal conditions, as a colorless, odorless, tasteless, diatomic gas. Hydrogen ions are protons. Besides the common HI isotope, hydrogen exists as the stable isotope deuterium and the unstable, radioactive isotope tritium. [NIH]... [Pg.68]

Other elements often separated from pile or cyclotron targets by distillation or volatilisation are tritium (3), germanium as the bromide (23), arsenic as the trichloride (67), technetium (23), (91), rhenium (24), (25) and osmium (25) as oxides. [Pg.10]

We will use reaction 10.15 to illustrate two important concepts of kinetic isotope effect studies. The first concerns the relation between isotope effects of different isotopes of the same element, say D and T. We denote the rate constant of reaction 10.15 by kn and consider isotope effects when one hydrogen in the a-position is substituted by deuterium or tritium ... [Pg.325]

Isotrope, Having the same atomic number (and position in the Periodic Table of Elements) but different masses. The difference is due to extra neutrons in the nucleus. For example hydrogen, one of three isotopes, has an atomic number of 1 and a mass of 1 the naturally occurring deuterium has a mass of 2 because it has an extra neutron in its nucleus the artificially produced tritium has another neutron for a mass of three. All three have one proton and electron and, hence, an atomic number of 1. [Pg.406]

Elements have isotopes. These vary in the number of nuclear neutrons. For example, we have hydrogen, no neutrons, deuterium, one neutron, and tritium, two neutrons. [Pg.48]


See other pages where Tritium elements is mentioned: [Pg.339]    [Pg.411]    [Pg.335]    [Pg.2]    [Pg.13]    [Pg.14]    [Pg.14]    [Pg.15]    [Pg.33]    [Pg.419]    [Pg.466]    [Pg.356]    [Pg.1039]    [Pg.298]    [Pg.1614]    [Pg.107]    [Pg.301]    [Pg.72]    [Pg.439]    [Pg.361]    [Pg.22]    [Pg.343]    [Pg.7]    [Pg.415]    [Pg.114]    [Pg.1637]    [Pg.169]    [Pg.33]    [Pg.64]    [Pg.43]   
See also in sourсe #XX -- [ Pg.54 ]

See also in sourсe #XX -- [ Pg.54 ]




SEARCH



Tritium

© 2024 chempedia.info