Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trifluoromethylation catalysts

Alkylation. Ben2otrifluoride can also be alkylated, eg, chloromethyl methyl ether—chlorosulfonic acid forms 3-(trifluoromethyl)ben2yl chloride [705-29-3] (303,304), which can also be made from / -xylene by a chlorination—fluorination sequence (305). Exchange cyanation of this product in the presence of phase-transfer catalysts gives 3-(trifluoromethylphenyl)acetonitrile [2338-76-3] (304,305), a key intermediate to the herbicides flurtamone... [Pg.329]

Although fluonnation of peroxoanions [S2] has been examined, the major emphasis in the fluonnation of oxygenated material is the preparation offhioroxy compounds The simplest, trifluoromethyl hypofluorite, can be prepared almost quantitatively by the action of fluorine on carbonyl fluoride (fluorophosgene) in the presence of various catalysts [Si, 84] Addition of fluorine to trifluoroacetic acid [S5] or its sodium salt [S6] gives rise to FjCF(OF)2 Long-chain fluoroxy compounds can also... [Pg.45]

To overcome these problems with the first generation Brmsted acid-assisted chiral Lewis acid 7, Yamamoto and coworkers developed in 1996 a second-generation catalyst 8 containing the 3,5-bis-(trifluoromethyl)phenylboronic acid moiety [10b,d] (Scheme 1.15, 1.16, Table 1.4, 1.5). The catalyst was prepared from a chiral triol containing a chiral binaphthol moiety and 3,5-bis-(trifluoromethyl)phenylboronic acid, with removal of water. This is a practical Diels-Alder catalyst, effective in catalyzing the reaction not only of a-substituted a,/ -unsaturated aldehydes, but also of a-unsubstituted a,/ -unsaturated aldehydes. In each reaction, the adducts were formed in high yields and with excellent enantioselectivity. It also promotes the reaction with less reactive dienophiles such as crotonaldehyde. Less reactive dienes such as isoprene and cyclohexadiene can, moreover, also be successfully employed in reactions with bromoacrolein, methacrolein, and acrolein dienophiles. The chiral ligand was readily recovered (>90%). [Pg.13]

Experience in PTC with cationic catalysts showed that, in general, the most suitable compounds have symmetrical structures, are lipophilic, and have the active cationic charge centrally located or sterically shielded by substituents. For anionic catalysis sodium tetraphenylborate fulfills these conditions, but it is not stable under acidic conditions. However, certain derivatives of this compound, namely sodium tetra-kis[3,5-bis(trifluoromethyl)phenyl]borate (TFPB, 12.162) and sodium tetrakis[3,5-bis-(l,l,l,3,3,3-hexafluoro-2-methoxy-2-propyl)phenyl]borate (HFPB) are sufficiently stable to be used as PTC catalysts for azo coupling reactions (Iwamoto et al., 1983b 1984 Nishida et al., 1984). These fluorinated tetraphenylborates were found to catalyze strongly azo coupling reactions, some of which were carried out with the corresponding diazotization in situ. [Pg.378]

Although there are several reports in the literature on boron-mediated amide formations, the boron reagents had to be used in stoichiometric amounts.1-4-5-6-7-8-9 Recently, Yamamoto et al. presented the first truly catalytic method allowing for a direct amide formation from free carboxylic acids and amines as the reaction partners.10-1112 Best results were obtained by using phenylboronic acids bearing electron withdrawing substituents in the meta- and/or para-positions such as 3,4,5-trifluorophenylboronic acid or 3,5-bis(trifluoromethyl)boronic acid as the catalysts. [Pg.137]

Alkylzinc halides have also been prepared under microwave irradiation. The Reformatsky reagents (2-t-butoxy-2-oxoethyl)zinc bromide and [(2-dibenzylamino)-2-oxoethyl]zinc bromide were synthesized from the corresponding bromides via reaction with zinc in THF (Scheme 5) [24], The oxidative addition was executed at 100 °C in 5 min. The obtained reagents were subsequently used in Negishi reactions on 2-bromopyridine, 3-bromopyridine, 2-bromo-5-nitropyridine, and 2-bromo-5-trifluoromethyl-pyridine using Pd(PPh3)4 as a catalyst (Scheme 5). [Pg.159]

This was also accomplished with BaRu(0)2(OH)3. The same type of conversion, with lower yields (20-30%), has been achieved with the Gif system There are several variations. One consists of pyridine-acetic acid, with H2O2 as oxidizing agent and tris(picolinato)iron(III) as catalyst. Other Gif systems use O2 as oxidizing agent and zinc as a reductant. The selectivity of the Gif systems toward alkyl carbons is CH2 > CH > CH3, which is unusual, and shows that a simple free-radical mechanism (see p. 899) is not involved. ° Another reagent that can oxidize the CH2 of an alkane is methyl(trifluoromethyl)dioxirane, but this produces CH—OH more often than C=0 (see 14-4). ... [Pg.1533]

Homoenolate Reactivity The ability to generate homoenolates from enals and its application to the preparation of y-butyrolactones 30, through reaction with an aldehyde or aryl trifluoromethyl ketone, was reported independently by Glorius [8], and Bode and Burstein [9] (Scheme 12.4). A sterically demanding NHC catalyst is required to promote reactivity at the d terminus and to prevent competitive benzoin dimerisation. Nair and co-workers have reported a similar spiro-y-lactone formation reaction using cyclic 1,2-diones, including cyclohexane-1,2-dione and substituted isatin derivatives [10]. [Pg.266]

The compounds benzonitrile, p-methylbenzonitrile, /)-methoxybenzonitrile, p-trifluoromethyl-benzonitrile, /)-methoxycarbonylbenzonitrile, and triethoxysilane are commercial products and are degassed and stored under argon before use. Trimethylsilane was prepared according to a literature report [38]. The nitrile (9.8 mmol) and the hydrosilane (49 mmol) are added to the rhodium catalyst (0.1 mmol) contained in a Carius tube. When using trimethylsilane, the operation is performed at —20°C. The tube is closed and the mixture stirred at 100 °C for 15h. The liquid is separated by filtration and the excess of hydrosilane removed under vacuum to leave the N, Wdisilylamine derivative. If necessary, a bulb to bulb distillation is performed to obtain a completely colorless liquid. The yields obtained in the different runs are reported in Table 6. The product have been characterized by elemental analysis, NMR spectroscopy, and GC-MS analysis. [Pg.450]

Figure 56.2 Synthetic sequence followed by students for the synthesis of catalysts for evaluation. Bis(trifluoromethyl) derivative (6h) was prepared by the procedure ofLeazer etal. ... Figure 56.2 Synthetic sequence followed by students for the synthesis of catalysts for evaluation. Bis(trifluoromethyl) derivative (6h) was prepared by the procedure ofLeazer etal. ...
An interesting series of ring-closing alkyne metathesis reactions (RCAM) has recently been reported by Fiirstner and coworkers (Scheme 6.72) [152], Treatment of biaryl-derived diynes with 10 mol% of a catalyst prepared in situ from molybdenum hexacarbonyl and 4-(trifluoromethyl)phenol at 150 °C for 5 min led to a ca. 70% iso-... [Pg.156]

This complex is not the actual catalyst for the hydrovinylation, but needs to be activated in the presence of a suitable co-catalyst. The role of this additive is to abstract the chloride ion from the nickel centre to generate a cationic allyl complex that further converts to the catalytically active nickel hydride species. In conventional solvents this is typically achieved using strong Lewis acids such as Et2AlCl. Alternatively, sodium or lithium salts of non-coordinating anions such as tetrakis-[3,5-bis(trifluoromethyl)phenyl]borate (BARF) can be used to activate hydrovinylation... [Pg.227]

Scheme 39.2 Examples of typical rhodium-based catalyst systems and modified derivatives of triphenylphosphine as used to control their solubility with scC02 in homogeneous or multiphase systems (BARF=tetrakis[3,5-bis (trifluoromethyl)phenyl]borate). Scheme 39.2 Examples of typical rhodium-based catalyst systems and modified derivatives of triphenylphosphine as used to control their solubility with scC02 in homogeneous or multiphase systems (BARF=tetrakis[3,5-bis (trifluoromethyl)phenyl]borate).
In Scheme 8 40, the reaction of 9-anthryl trifluoromethyl ketone 103 and mesityl trifluoromethyl ketone 104 with catecholborane 106 in the presence of 10 mol% of chiral catalyst 107 (CBS) provides (R)-carbinol 108 and 109 with 94% and 100% ee, respectively. When methyl ketone instead of trifluoromethyl ketone is used in the reaction, product 110 is obtained with ( -configuration in 99.7% ee with over 95% yield. [Pg.482]

A very reactive Lewis acid is obtained when the complex [(EBTHI)Zr(Me)2] is converted in situ to a dicationic species by protonation with the acid H-BARF (BARF = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) in the presence of the Diels—Alder substrate oxazolidi-none [88] (Scheme 8.48). The dicationic species is stabilized through coordination by the oxazolidinone and by diethyl ether (derived from the acid etherate employed). The catalyst loading in the Diels—Alder reaction could be lowered to 1 mol% (Zr) and the reaction still... [Pg.311]

Accidently, using hexafluoro-p-xylene with the contaminated copper wire obtained from the precursor method experiments, a polymer film was deposited on the silicon substrates. Obviously, some dibromotetrafluoro-p-xylene from the precursor method that adhered to, or reacted with, the metal could somehow initiate this VDP process. However, a complete explanation of these results is not yet available. As an extension of this discovery, commercially available 1,4-bis(trifluoromethyl)benzene in conjunction with a catalyst/initiator has proved to be a potential alternative by which to deposit poly(tetrafluoro-p-xylylene) film successfully.23... [Pg.283]

Corey and co workers2056, 24X reported the reactive cationic oxazaborinane catalyst and afforded 398a which promoted cycloadditions between cyclopentadiene and several a,/J-cnals good enantioselectivities. Excellent results were obtained in cycloadditions of several modestly reactive dienes to a-bromoacrolein in the presence of catalyst 398b having tetra[3,5-bis(trifluoromethyl)phenyl]borate as the counterion (Table 23). [Pg.419]


See other pages where Trifluoromethylation catalysts is mentioned: [Pg.208]    [Pg.208]    [Pg.308]    [Pg.308]    [Pg.329]    [Pg.89]    [Pg.240]    [Pg.172]    [Pg.534]    [Pg.201]    [Pg.479]    [Pg.987]    [Pg.184]    [Pg.121]    [Pg.106]    [Pg.166]    [Pg.213]    [Pg.80]    [Pg.305]    [Pg.495]    [Pg.384]    [Pg.155]    [Pg.360]    [Pg.371]    [Pg.468]    [Pg.124]    [Pg.247]    [Pg.169]    [Pg.242]    [Pg.817]    [Pg.27]    [Pg.1297]    [Pg.1308]    [Pg.1365]    [Pg.102]   
See also in sourсe #XX -- [ Pg.277 ]




SEARCH



Trifluoromethyl group copper catalysts

Trifluoromethyl group palladium catalysts

© 2024 chempedia.info