Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transuranic production

Modifications to this process can be made to effect recovery of neptunium, americium, curium, californium, strontium, cesium, technetium, and other nuclides. The efficient production of specific transuranic products requires consideration of the irradiation cycle in the reactor and separation of intermediate products for further irradiation. [Pg.972]

Spent nuclear fuel has fission products, uranium, and transuranic elements. Plans call for permanent disposal in underground repositories. Geological studies are in progress at the Yucca Mountain site in Nevada. Until a repository is completed, spent fuel must be stored in water pools or in dry storage casks at nuclear plant sites. [Pg.181]

Nuclear wastes are classified according to the level of radioactivity. Low level wastes (LLW) from reactors arise primarily from the cooling water, either because of leakage from fuel or activation of impurities by neutron absorption. Most LLW will be disposed of in near-surface faciHties at various locations around the United States. Mixed wastes are those having both a ha2ardous and a radioactive component. Transuranic (TRU) waste containing plutonium comes from chemical processes related to nuclear weapons production. These are to be placed in underground salt deposits in New Mexico (see... [Pg.181]

As the recycled fuel composition approaches steady state after approximately four cycles (1), the heat and radiation associated with and Pu require more elaborate conversion and fuel fabrication facihties than are needed for virgin fuel. The storage, solidification, packaging, shipping, and disposal considerations associated with wastes that result from this approach are primarily concerned with the relatively short-Hved fission products. The transuranic... [Pg.201]

Weapons materials from production reactors were accumulated during the Cold War period as a part of the U.S. defense program. Prominent were tritium, ie, hydrogen-3, having a of 12.3 yr, and plutonium-239, 1/2 = 2.4 X lO" yr. The latter constitutes a waste both as a by-product of weapons fabrication in a waste material called transuranic waste (TRU), and as an excess fissionable material if not used for power production in a reactor. [Pg.228]

Transuranic Waste. Transuranic wastes (TRU) contain significant amounts (>3,700 Bq/g (100 nCi/g)) of plutonium. These wastes have accumulated from nuclear weapons production at sites such as Rocky Flats, Colorado. Experimental test of TRU disposal is planned for the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, New Mexico. The geologic medium is rock salt, which has the abiUty to flow under pressure around waste containers, thus sealing them from water. Studies center on the stabiUty of stmctures and effects of small amounts of water within the repository. [Pg.232]

Nuclear Waste Reprocessing. Liquid waste remaining from processing of spent reactor fuel for military plutonium production is typically acidic and contains substantial transuranic residues. The cleanup of such waste in 1996 is a higher priority than military plutonium processing. Cleanup requires removal of long-Hved actinides from nitric or hydrochloric acid solutions. The transuranium extraction (Tmex) process has been developed for... [Pg.201]

In 1938 Niels Bohr had brought the astounding news from Europe that the radiochemists Otto Hahn and Fritz Strassmann in Berlin had conclusively demonstrated that one of the products of the bom-bardmeiit of uranium by neutrons was barium, with atomic number 56, in the middle of the periodic table of elements. He also announced that in Stockholm Lise Meitner and her nephew Otto Frisch had proposed a theory to explain what they called nuclear fission, the splitting of a uranium nucleus under neutron bombardment into two pieces, each with a mass roughly equal to half the mass of the uranium nucleus. The products of Fermi s neutron bombardment of uranium back in Rome had therefore not been transuranic elements, but radioactive isotopes of known elements from the middle of the periodic table. [Pg.499]

Tramex [Transuranic metal (or amine) extraction] A process for separating transuranic elements from fission products by solvent extraction from chloride solutions into a tertiary amine solution. Developed at Oak Ridge National Laboratory, TN, for processing irradiated plutonium. [Pg.273]

Transuranic Waste Transuranic waste (TRU) results from fuel reprocessing and fuel fabrication facilities, the production of nuclear weapons, and the decommissioning of nuclear reactors or fuel cycle facilities. TRU includes clothing,... [Pg.488]

High-level waste that contains highly radioactive material, including fission products, traces of uranium and plutonium, and other transuranic elements resulting from the chemical reprocessing of spent fuel... [Pg.69]

Although this definition specifies a lower limit on the concentration of particular radionuclides, it also depends on the qualitative, source-based definition of high-level waste and, thus, is not strictly quantitative. Alpha-emitting transuranium radionuclides with half-lives greater than 20 y are expected to be the principal constituents of most transuranic waste, but the definition does not specify any limits on the concentrations of other radionuclides that may occur in transuranic waste, including fission products, alpha-emitting nontransuranium radionuclides, and alpha-emitting transuranium radionuclides with half-lives less than 20 y. [Pg.185]

Fast Reactor An advanced technology nuclear reactor that uses a fast fission process utilizing fast neutrons that would split some of the U-258 atoms as well as transuranic isotopes. The goal is to use nuclear material more efficiently and safely in the production of nuclear energy. [Pg.18]


See other pages where Transuranic production is mentioned: [Pg.104]    [Pg.188]    [Pg.1255]    [Pg.104]    [Pg.188]    [Pg.1255]    [Pg.205]    [Pg.414]    [Pg.879]    [Pg.161]    [Pg.57]    [Pg.135]    [Pg.384]    [Pg.307]    [Pg.369]    [Pg.375]    [Pg.14]    [Pg.67]    [Pg.68]    [Pg.202]    [Pg.1656]    [Pg.484]    [Pg.2]    [Pg.32]    [Pg.89]    [Pg.133]    [Pg.597]    [Pg.9]    [Pg.9]    [Pg.174]    [Pg.174]    [Pg.175]    [Pg.184]    [Pg.186]    [Pg.189]    [Pg.209]    [Pg.252]    [Pg.384]    [Pg.393]   
See also in sourсe #XX -- [ Pg.436 ]




SEARCH



TRansUranics

Transuranes

Transuranic

© 2024 chempedia.info