Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transmission electron microscopy interfacing

Processes that occur at a size scale larger than the individual chain have been studied using microscopy, mainly transmission electron microscopy (TEM), but optical microscopy has been useful to examine craze shapes. The knowledge of the crazing process obtained by TEM has been ably summarised by Kramer and will not be repeated here [2,3]. At an interface between two polymers a craze often forms within one of the materials, typically the one with lower crazing stress. [Pg.223]

The interface properties can usually be independently measured by a number of spectroscopic and surface analysis techniques such as secondary ion mass spectroscopy (SIMS), X-ray photoelectron spectroscopy (XPS), specular neutron reflection (SNR), forward recoil spectroscopy (FRES), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), infrared (IR) and several other methods. Theoretical and computer simulation methods can also be used to evaluate H t). Thus, we assume for each interface that we have the ability to measure H t) at different times and that the function is well defined in terms of microscopic properties. [Pg.354]

Usually, the molecular strands are coiled in the glassy polymer. They become stretched when a crack arrives and starts to build up the deformation zone. Presumably, strain softened polymer molecules from the bulk material are drawn into the deformation zone. This microscopic surface drawing mechanism may be considered to be analogous to that observed in lateral craze growth or in necking of thermoplastics. Chan, Donald and Kramer [87] observed by transmission electron microscopy how polymer chains were drawn into the fibrils at the craze-matrix-interface in PS films [92]. One explanation, the hypothesis of devitrification by Gent and Thomas [89] was set forth as early as 1972. [Pg.345]

Also a good interface resolution is obtained with transmission electron microscopy (TEM), where, however, a dedicated sample preparation and treatment are necessary to achieve nanometer resolution and suitable contrast [64]. Thus the... [Pg.375]

In 1997, a Chinese research group [78] used the colloidal solution of 70-nm-sized carboxylated latex particles as a subphase and spread mixtures of cationic and other surfactants at the air-solution interface. If the pH was sufficiently low (1.5-3.0), the electrostatic interaction between the polar headgroups of the monolayer and the surface groups of the latex particles was strong enough to attract the latex to the surface. A fairly densely packed array of particles could be obtained if a 2 1 mixture of octadecylamine and stearic acid was spread at the interface. The particle films could be transferred onto solid substrates using the LB technique. The structure was studied using transmission electron microscopy. [Pg.217]

Figure S.1S. Upper Equilibrium polyhedrons of metal particles on a support for different combinations of free energies of surfaces and interfaces. Lower Transmission electron microscopy of structures obtained by depositing 5-10 ML of Pd on a MgO surface. [Adapted from www.fysik.dtu.dk/CAMP, and C.R. Henry, Surf. Sci. Rep. 21 (1998) l.j... Figure S.1S. Upper Equilibrium polyhedrons of metal particles on a support for different combinations of free energies of surfaces and interfaces. Lower Transmission electron microscopy of structures obtained by depositing 5-10 ML of Pd on a MgO surface. [Adapted from www.fysik.dtu.dk/CAMP, and C.R. Henry, Surf. Sci. Rep. 21 (1998) l.j...
Transmission electron microscopy (TEM) is a powerful and mature microstructural characterization technique. The principles and applications of TEM have been described in many books [16 20]. The image formation in TEM is similar to that in optical microscopy, but the resolution of TEM is far superior to that of an optical microscope due to the enormous differences in the wavelengths of the sources used in these two microscopes. Today, most TEMs can be routinely operated at a resolution better than 0.2 nm, which provides the desired microstructural information about ultrathin layers and their interfaces in OLEDs. Electron beams can be focused to nanometer size, so nanochemical analysis of materials can be performed [21]. These unique abilities to provide structural and chemical information down to atomic-nanometer dimensions make it an indispensable technique in OLED development. However, TEM specimens need to be very thin to make them transparent to electrons. This is one of the most formidable obstacles in using TEM in this field. Current versions of OLEDs are composed of hard glass substrates, soft organic materials, and metal layers. Conventional TEM sample preparation techniques are no longer suitable for these samples [22-24], Recently, these difficulties have been overcome by using the advanced dual beam (DB) microscopy technique, which will be discussed later. [Pg.618]

Mieroscopic visualization techniques have also been used to investigate mucus-polymer interactions [36-39]. Transmission electron microscopy was used by Fiebrig et al. [36], whereas different microscopical techniques were used by Lehr et al. [37] for the visualization of mucoadhesive interfaces. Transmission electron microscopy in combination with near-fleld Fourier transform infrared microscopy (FT-IR) has been shown to be suitable for investigating the adhesion-promoting effect of polyethyleneglycol added in a hydrogel [38]. Moreover, scanning force microscopy may be a valuable approaeh to obtain information on mueoadhesion and specific adhesion phenomena [39]. [Pg.177]

In addition to surface analytical techniques, microscopy, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning tunneling microscopy (STM) and atomic force microscopy (AFM), also provide invaluable information regarding the surface morphology, physico-chemical interaction at the fiber-matrix interface region, surface depth profile and concentration of elements. It is beyond the scope of this book to present details of all these microscopic techniques. [Pg.18]

V.P. Lehto and L.A. Laitinen, Scanning and transmission electron microscopy of the blood-bubble interface in decompressed rats, Aviat. Space Environ. Med. 50 (1979) 803-807. [Pg.285]

Kleebe, H.-J., Corbin, N., Willkens, C. and Rtihle, M., (1990), Transmission electron microscopy studies of silicon nitride/silicon carbide interfaces , Mat. Res. Soc. Symp. Proc., 170, 79-84. [Pg.485]


See other pages where Transmission electron microscopy interfacing is mentioned: [Pg.517]    [Pg.198]    [Pg.198]    [Pg.338]    [Pg.168]    [Pg.416]    [Pg.363]    [Pg.364]    [Pg.469]    [Pg.78]    [Pg.7]    [Pg.526]    [Pg.500]    [Pg.244]    [Pg.148]    [Pg.66]    [Pg.125]    [Pg.84]    [Pg.284]    [Pg.11]    [Pg.131]    [Pg.588]    [Pg.39]    [Pg.289]    [Pg.287]    [Pg.342]    [Pg.77]    [Pg.307]    [Pg.208]    [Pg.331]    [Pg.51]    [Pg.150]    [Pg.16]    [Pg.224]    [Pg.292]    [Pg.294]    [Pg.463]   
See also in sourсe #XX -- [ Pg.101 , Pg.102 ]




SEARCH



Electron interfaces

Transmission electron microscopy

Transmission electron microscopy interface imaging

Transmission electronic microscopy

Transmission microscopy

© 2024 chempedia.info