Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Translation artificial

The evolutionary process of a genetic algorithm is accomplished by genetic operators which translate the evolutionary concepts of selection, recombination or crossover, and mutation into data processing to solve an optimization problem dynamically. Possible solutions to the problem are coded as so-called artificial chromosomes, which are changed and adapted throughout the optimization process until an optimrun solution is obtained. [Pg.467]

Each of the membranes acts like a hard wall for dimer molecules. Consequently, in parts I and III we observe accumulation of dimer particles at the membrane. The presence of this layer can prohibit translation of particles through the membrane. Moreover, in parts II and IV of the box, at the membranes, we observe a depletion of the local density. This phenomenon can artificially enhance diffusion in the system. In order to avoid the problem, a double translation step has been applied. In one step the maximum displacement allows a particle to jump through the surface layer in the second step the maximum translation is small, to keep the total acceptance ratio as desired. [Pg.234]

Reverse transcription is the copying of an RNA molecule back into its DNA complement. The enzymes that perform this function are called reverse transcriptases. Reverse transcription is used naturally by retroviruses to insert themselves into an organism s genome. Artificially induced reverse transcription is a useful technique for translating unstable messenger RNA (mRNA) molecules into stable cDNA. [Pg.1079]

The translational diffusion coefficient in Eq. 11 can in principle be measured from boimdary spreading as manifested for example in the width of the g (s) profiles although for monodisperse proteins this works well, for polysaccharides interpretation is seriously complicated by broadening through polydispersity. Instead special cells can be used which allow for the formation of an artificial boundary whose diffusion can be recorded with time at low speed ( 3000 rev/min). This procedure has been successfully employed for example in a recent study on heparin fractions [5]. Dynamic fight scattering has been used as a popular alternative, and a good demonstra-... [Pg.225]

The strain in electric field-associated bending of a PVA-PAA gel is given by the equation g = 6DY/L2 (see Eq. 21). The strain depends on the electric power applied to the gel. Thus, the deflection increases as the thickness becomes small even if the electric power remains constant. The PVA-PAA gel rod of 1 mm diameter bends semicircularly within 1 s under both dc and ac excitation. An artificial fish with a PVA-PAA gel tail 0.7 mm thick has been designed, and it has been demonstrated that the fish swims forward at a velocity of 2 cm/sec as the gel flaps back and forth under sinusoidally varied electric fields (Fig. 13b). This prototype of a biomimetic actuator shows that translational motion may be produced using bending deformation [74],... [Pg.160]

New insights into the analysis of hydrophobically post-translational modified proteins could be achieved by the construction of lipidated proteins in a combination of bioorganic synthesis of activated lipopeptides and bacterial expression of the protein backbone (Fig. 19). The physico-chemical properties of such artificial lipoproteins differ substantially from those of the corresponding lipopeptides. The pronounced dominance of the hydrophilic protein moiety (e.g., for the Ras protein 181 amino acids) over a short lipopeptide with one or two hydrophobic modifications provides solubility up to 10 4 mol/1, while the biotinylated or fluorescence labeled lipopeptides exhibit low solubility in aqueous solutions and can be applied in the biophysical experiments only in vesicle integrated form or dissolved in organic solvent. [Pg.107]

In general, rodents that have been exposed to an artificial odor during early life show an increased attraction to stimulus animals scented with that odor as adults. Increased odor preference following early exposure has been observed in female mice (Mainardi, Marsan and Pasquali 1965) and male rats (Marr and Gardner 1965). In some cases, this odor preference translates into increases in mating efficiency with females of the familiar scent. Specifically, male rats reared with citral-scented dams ejaculate faster when mating with citral-scented females compared to normal-scented females (Fillion and Blass 1986). [Pg.254]

By applying a variant of the extremely powerful convolution theorem stated above, computing the overlap integral of one scalar field (e.g., an electron density), translated by t relative to another scalar field for all possible translations t, simplifies to computing the product of the two Fourier-transformed scalar fields. Furthermore, if periodic boundary conditions can be imposed (artificially), the computation simplifies further to the evaluation of these products at only a discrete set of integral points (Laue vectors) in Fourier space. [Pg.73]

Even though these methods have shown some success, they require that the box containing the trial structure have cyclic boundary conditions to keep the calculations to a manageable size. This imposes an artificial translational symmetry on the structure. If the results are to converge to the observed structure, the box should either have the size and shape of the observed unit cell or else it should be sufficiently large that a small crystal can spontaneously form within it. [Pg.138]

On the other hand, in concave reagents, the reactive group is located within the cavity [7]. The concave geometry of enzymes is translated into artificial reagents. The concave shape is retained but the reactive group in the active site is replaced by a standard reagent of organic chemistry. Furthermore the concave... [Pg.59]


See other pages where Translation artificial is mentioned: [Pg.259]    [Pg.346]    [Pg.13]    [Pg.358]    [Pg.159]    [Pg.431]    [Pg.422]    [Pg.170]    [Pg.229]    [Pg.47]    [Pg.127]    [Pg.271]    [Pg.4]    [Pg.4]    [Pg.103]    [Pg.530]    [Pg.324]    [Pg.463]    [Pg.9]    [Pg.242]    [Pg.50]    [Pg.407]    [Pg.612]    [Pg.188]    [Pg.189]    [Pg.276]    [Pg.590]    [Pg.97]    [Pg.370]    [Pg.58]    [Pg.47]    [Pg.93]    [Pg.3]    [Pg.27]    [Pg.188]    [Pg.745]    [Pg.349]    [Pg.446]    [Pg.231]    [Pg.1126]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



© 2024 chempedia.info