Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metals metal-alkyne bond insertion

Insertion of alkynes into early transition metal M-H bonds is much Exercise 8-5... [Pg.259]

In reactions that are formally analogous to hydrosilylation, transition-metal complexes catalyze the insertion of unsaturated hydrocarbons into other Si-X (X = C, Si, Sn, etc.) bonds. Palladium catalysts seem to work best in many of these reactions. The work of Kumada and coworkers has already been referred to in connection with metal-catalyzed silylene transfer to alkynes (see equation 47)95"97. Sakurai s group has shown that the cyclic disilane 55 will add to alkynes in the presence of a palladium catalyst (equation 110, see also equation 80). The unstrained disilane Me3SiSiMe3 undergoes a similar reaction... [Pg.1463]

These reactions are covered in other chapters of Volume 11 (Chapters 11.06 and 11.07). This part deals only with examples which are in connection with other sections of this chapter. Additions of metallocarbenoids to unsaturated partners have been extensively studied. Most of the initial studies have involved the transition metal-catalyzed decomposition of cr-carbonyl diazo compounds.163,164 Three main reaction modes of metallocarbenoids derived from a-carbonyl diazo precursor are (i) addition to an unsaturated C-C bond (olefin or alkyne), (ii) C-H insertion, and (iii) formation of an ylid (carbonyl or onium).1 5 These reactions have been applied to the total synthesis of natural... [Pg.320]

Generally, cyclohexyne is an unstable molecule because of its ring strain. However, it can be stabilized by coordination to transition metals.35 The reduction of 1,2-dibromocyclohexene by sodium/mercury in the presence of a nickel-bromide complex afforded the Ni-alkyne complex 66 as a thermally stable and isolable compound (Scheme 22).36 Complex 66 smoothly reacted with C02 under atmospheric pressure to give nickelacycle 67 in good yield. Dimethyl acetylenedicarboxylate was inserted into the vinyl-nickel bond in 67 to give the seven-membered oxanickelacycle 68. [Pg.546]

Like alkynes, a variety of mechanistic motifs are available for the transition metal-mediated etherification of alkenes. These reactions are typically initiated by the attack of an oxygen nucleophile onto an 72-metalloalkene that leads to the formation of a metal species. As described in the preceding section, the G-O bond formation event can be accompanied by a wide range of termination processes, such as fl-H elimination, carbonylation, insertion into another 7r-bond, protonolysis, or reductive elimination, thus giving rise to various ether linkages. [Pg.679]

In relation to the mechanistic proposal, an interesting reactivity of (boryl)(silyl)platinum(n) complex has been reported.223 The complex is prepared by the reaction of silylborane with Pt(cod)2 complex via oxidative addition (Scheme 46). The (boryl)(silyl)platinum complex undergoes insertion of alkynes at the B-Pt bond to give (/3-borylalkenyl)(silyl)platinum(n) complex in high yield. Importantly, the insertion takes place regioselectively, with Pt-G bond formation at the internal. -carbon atom. This result may indicate that the boron-transition metal bond is more prone to undergo insertion of unsaturated molecules. [Pg.760]

Cobalt, as its CpCo(CO)2 complex, has proven to be especially suited to catalyze [2 + 2 + 2] cycloadditions of two alkyne units with an alkyne or alkene. These cobalt-mediated [2 + 2 + 2] cycloaddition reactions have been studied in great detail by Vollhardt337. The generally accepted mechanism for these cobalt mediated cycloadditions, and similar transition metal mediated cycloadditions in general, has been depicted in equation 166. Consecutive co-ordination of two triple bonds to CpCo(CO)2 with concomitant extrusion of two molecules of carbon monoxide leads to intermediates 578 and 579 via monoalkyne complex 577. These react with another multiple bond to form intermediate 580. The conversion of 578 to 580 is said to be kinetically favored over that of 579 to 580. Because intermediates like 580 have never been isolated, it is still unclear whether the next step is a Diels-Alder reaction to form the final product or an insertion to form 581. The exact circumstances might determine which pathway is followed. [Pg.461]

Alkynes react readily with a variety of transition metal complexes under thermal or photochemical conditions to form the corresponding 7t-complexes. With terminal alkynes the corresponding 7t-complexes can undergo thermal or chemically-induced isomerization to vinylidene complexes [128,130,132,133,547,556-569]. With mononuclear rj -alkyne complexes two possible mechanisms for the isomerization to carbene complexes have been considered, namely (a) oxidative insertion of the metal into the terminal C-Fl bond to yield a hydrido alkynyl eomplex, followed by 1,3-hydrogen shift from the metal to Cn [570,571], or (b) eoneerted formation of the M-C bond and 1,2-shift of H to Cp [572]. [Pg.98]

Ishikawa and coworkers have studied the unique reactivity of strained cyclic disilanes (Equation 9.11) [35]. Transition metals, especially those of Group 10, readily insert into the Si—Si bond of disilacyclobutene 118 and can catalyze the addition of that bond across a variety of unsaturated acceptors. In the case of Ni(0)-catalyzed reactions of 118 with trimethylsilyl alkynes, insertion was found to occur both in a 1,2-and in a 1,1-fashion. The latter of these pathways implies a 1,2-silyl-migration, presumably occurring at the metal center. A nickel vinylidene intermediate was therefore proposed, though efforts to prove its existence were inconclusive. Similar vinylidene intermediates have been proposed by Ishikawa and coworkers to account for migrations observed in related palladium- and platinum-catalyzed reactions [36]. [Pg.303]

A number of transition metal complexes react with alkenes, alkynes and dienes to afford insertion products (see Volume 4, Part 3). A general problem is that the newly formed carbon-metal bond is usually quite reactive and can undergo a variety of transformations, such as -hydride elimination or another insertion reaction, before being trapped by an electrophile.200 Usually, a better stability and lower reactivity is observed if the first carbometallation step leads to a metallacycle. It is worthy to note that the carbometallation of perfluorinated alkenes and alkynes constitutes a large fraction of the substrates investigated with transition metal complexes.20015... [Pg.903]

The following discussion deals not only with this reaction, but related reactions in which a transition metal complex achieves the addition of carbon monoxide to an alkene or alkyne to yield carboxylic acids and their derivatives. These reactions take place either by the insertion of an alkene (or alkyne) into a metal-hydride bond (equation 1) or into a metal-carboxylate bond (equation 2) as the initial key step. Subsequent steps include carbonyl insertion reactions, metal-acyl hydrogenolysis or solvolysis and metal-carbon bond protonolysis. [Pg.913]

In certain other systems, there is compelling evidence for the insertion into a metal-caiboxylate complex (equation 37). For example, in the synthesis of a-methylene-y-lactones from alkynic alcohols,70,71 no double bond rearrangement to a butenolide occurs, a reaction shown to take place in the presence of transition metal hydrides. The source of the vinyl proton (deuterium) on the a-methylene group is indeed the alcohol function. Finally, palladium carboxylate complexes containing alkynic (equation 40) or vinyl tails (equation 41) can be isolated and the corresponding insertion reaction can be observed. [Pg.937]

Reactions of alkynyliodonium salts 119 with nucleophiles proceed via an addition-elimination mechanism involving alkylidenecarbenes 120 as key intermediates. Depending on the structure of the alkynyliodonium salt, specific reaction conditions, and the nucleophile employed, this process can lead to a substituted alkyne 121 due to the carbene rearrangement, or to a cyclic product 122 via intramolecular 1,5-carbene insertion (Scheme 50). Both of these reaction pathways have been widely utilized as a synthetic tool for the formation of new C-C bonds. In addition, the transition metal mediated cross-coupling reactions of alkynyliodonium salts are increasingly used in organic synthesis. [Pg.120]

Oxidative cyclization is another type of oxidative addition without bond cleavage. Two molecules of ethylene undergo transition metal-catalysed addition. The intermolecular reaction is initiated by 7i-complexation of the two double bonds, followed by cyclization to form the metallacyclopentane 12. This is called oxidative cyclization. The oxidative cyclization of the a,co-diene 13 affords the metallacyclopentane 14, which undergoes further transformations. Similarly, the oxidative cyclization of the a,co-enyne 15 affords the metallacyclopentene 16. Formation of the five-membered ring 18 occurs stepwise (12, 14 and 16 likewise) and can be understood by the formation of the metallacyclopropene or metallacyclopropane 17. Then the insertion of alkyne or alkene to the three-membered ring 17 produces the metallacyclopentadiene or metallacyclopentane 18. [Pg.12]

Metalametallations of alkenes and alkynes are useful methods for the construction of 1,2-dimetala-alkanes and 1,2-dimetala-l-alkenes, which react subsequently with suitable electrophiles to form substituted alkanes and alkenes. Metalametallation is carried out usually with bimetallic reagents of the type R Si-M R, or R Sn-M R in which M = B, Al, Mg, Cu, Zn, Si or Sn. Some metalametallations proceed without catalysts Cu, Ag and Pd compounds are good catalysts. The metalametallation with bimetallic compounds, such as Si-B, Si-Mg, Si-Al, Si-Zn, Si-Sn, Si-Si, Sn-Al or Sn—Sn bonds, catalysed by transition metal complexes, is explained by the oxidative addition of the bimetallic compounds to form 478, and insertion of alkene generates 479. Finally 1,2-dimetallic compounds 480 are formed by reductive elimination. Dimetallation of alkynes proceeds similarly to give 481. Dimetallation is syn addition. [Pg.281]

Addition of hydride bonds of main group metals such as B—H, Mg—H, Al—H, Si—H and Sn—H to alkenes and alkynes to give 513 and 514 is called hydrometallation and is an important synthetic route to compounds of the main group metals. Further transformation of the addition product of alkenes 513 and alkynes 514 to 515,516 and 517 is possible. Addition of B—H, Mg—H, Al—H and Sn—H bonds proceeds without catalysis, but their hydrometallations are accelerated or proceed with higher stereoselectivity in the presence of transition metal catalysts. Hydrometallation with some hydrides proceeds only in the presence of transition metal catalysts. Hydrometallation starts by the oxidative addition of metal hydride to the transition metal to generate transition metal hydrides 510. Subsequent insertion of alkene or alkyne to the M—H bonds gives 511 or 512. The final step is reductive elimination. Only catalysed hydrometallations are treated in this section. [Pg.284]

Fig. 21 summarizes the complexes obtained. The formation of cycloadducts XIV can be explained formally as insertion into the Fe-N bond. By analogy to the well known cyclo-oligomerisation reactions of acetylenes94 in the presence of transition metals, it seems probable that the reaction occurs stepwise and is initiated by formation of a 7r-complex of the alkyne. The necessary vacant coordination site may be formed by loss of CO or by opening of one Fe-N bond. [Pg.129]

The presence of a transition metal is not necessarily required for hydrocarbon insertion. Alkyne incorporation has been reported for boracyclobutenes, as well as metallacyclobutene complexes of the transition elements. Boracyclobutene 51, a reactive intermediate prepared in situ (Section 2.12.9.2.1), inserts an additional equivalent of trimethylsilylacetylene into the B-C(sp2) bond to yield boracyclohexadiene 52 (Scheme 7). This isomerizes to the interesting bridged compound 53, an analogue of a nonclassical carbocation <1994AGE2306>. The related boracyclobutene 7 inserts the alkyne to yield a persistent boracyclohexadiene 54, but this product clearly arises from insertion into the boracyclobutene carbon-carbon bond rather than a boron-carbon bond <1994AGE1487>. [Pg.572]

The dimerization of 1 -alkynes to enynes by transition metal catalysts occurs either via alkynyl-vinylidene M(C=CR)(=C=CHR) or alkynyl-alkyne M(C=CR)(if-HC=CR) coupling, by insertion into the a Ru-C bond. Selectivity control depends on the previous orientation of the alkyne/vinylidene moiety. [Pg.65]

Sulfur dioxide reacts generally with transition metal alkyl, aryl, and a-allyl complexes to give sulfinate complexes. The reaction, first described in 1964 by Wojcicki and Bibler, resembles well-known insertion reactions of CO, C2F4, SnCl2, tetracyanoethy-lene, and other unsaturated species into metal-alkyl bonds, but there are important stereochemical and mechanistic differences Sulfur dioxide insertion into metal-alkene and metal-alkyne bonds have not been reported. However, PdCl2 has been used as a catalyst for copolymerization of ethylene and SO2 to polysulfones and insertion into a Pd-ethylene bond is a conceivable reaction step. [Pg.84]

Chalk and Harrod provided the first mechanistic explanation for the transition metal catalyzed hydrosilation as early as in 1965. Their mechanism was derived from studies with Speier s catalyst and provided a general scheme, which could be used also for other transition metals. The catalytic cycle consists of an initial oxidative addition (see Oxidative Addition) of the Si-H bond, followed by coordination of the unsaturated molecule, a subsequent migratory insertion (see Insertion) into the metal-hydride bond and eventually a reductive elimination (see Reductive Elimination) (Scheme 3 lower cycle). The scheme provides an explanation for the observed Z-geometry in the hydrosilation of alkynes, which is a consequence of the syn-addition mechanism. The observation of silated alkenes as by-products in the hydrosilation of alkenes along with the lack of well-established stoichiometric examples of reductive elimination of aUcylsilanes from alkyl silyl metal complexes... [Pg.1645]

Reactions catalyzed by transition-metal complexes allow the synthesis of a variety of esters ruthenium(II) promotes the addition of acids to alkynes,379 380 e.g. 2,6-difluorobenzoic acid (9) undergoes addition to but-l-en-3-yne to furnish the enol ester 10.380 Aryl bromides381 and aryl or vinyl triflates,382-384 but also aryl chlorides when their tricarbonylchromium(O) complexes are used,385 react with palladium382- 385 or cobalt complexes38 to form a C —M bond. Insertion of carbon monoxide into the carbon-metal bond followed by trapping with an alcohol or phenol leads to ester formation, e.g. triflate 11 gives ester 12.382... [Pg.585]

The additions proceed regioselectively in favor of terminal boron adducts to produce (Z)-l-alkenylboron compounds through a syn addition of the X-B bond to 1-alkynes. The mechanism is fundamentally different from the uncatalyzed process and is postulated to proceed through the oxidative addition of the X-B bonds (X = H, RS, Y2B) to the transition-metal complex [M(0)] to form X-M-BYj species (28), followed by the migratory cis insertion... [Pg.43]

According to the first information on the catalysis of hydrosilylation by orga-noactinide complexes Cp 2A Me2 (where A = Th, U), they are efficient for hydrosilylation of terminal alkynes [82]. All catalytic and kinetic examinations of catalysis by early (d°) transition metal complexes (also by metal complexes with non-Cp ligands, e.g., [83]) support the generally accepted mechanism involving rapid olefin (acetylene) insertion into an M-H bond followed by a... [Pg.499]

Although relatively few systematic studies of alkyne insertions into transition metal hydride bonds have been reported, representative reactions of all the transition groups are now known. [Pg.571]


See other pages where Transition metals metal-alkyne bond insertion is mentioned: [Pg.343]    [Pg.114]    [Pg.224]    [Pg.309]    [Pg.405]    [Pg.50]    [Pg.368]    [Pg.2430]    [Pg.28]    [Pg.51]    [Pg.86]    [Pg.14]    [Pg.162]    [Pg.9]    [Pg.338]    [Pg.131]    [Pg.258]    [Pg.269]    [Pg.501]    [Pg.151]    [Pg.1012]    [Pg.1039]    [Pg.696]    [Pg.268]    [Pg.400]   
See also in sourсe #XX -- [ Pg.41 ]

See also in sourсe #XX -- [ Pg.41 ]




SEARCH



Alkyne insertion

Alkynes bonding

Alkynes metalated

Alkynes metallation

Alkynes transition metals

Bond insertion

Metal alkynes

Metal insertion

Metal insertion transition metals

Metal inserts

Metal-Alkyne Bonds

Metalation alkynes

Transition metals insertion

© 2024 chempedia.info