Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition-metal-mediated radical

Recently, living radical polymerizations have been well developed, and various methods such as (1) iniferter mediated radical polymerization [31], (2) transition metal-mediated radical polymerization or atom transfer radical polymerization (ATRP) [32-34] (3) nitroxide-mediated free-radical poly-... [Pg.126]

A review for transition metal-mediated radical cyclizations f. Iqbal, B. Bhatia, N. K. Nayyar, Chem. Rev. 1994, 94, 519. [Pg.342]

MALDI spectrum of a hydroxyl functional polymer prepared by GTP the level of the impurity is easily seen and the success of this reaction clearly observed. However, this is not a universally applicable technique. Perhaps the most topical living polymerisation at present is transition metal mediated radical polymerization. This typically gives a polymer with a tertiary halide terminal group. This group, as has nitroxide, has been found to be very labile in the mass spectrometer leading to fragmentation. [Pg.69]

As discussed in Section 7.3, conventional free radical polymerization is a widely used technique that is relatively easy to employ. However, it does have its limitations. It is often difficult to obtain predetermined polymer architectures with precise and narrow molecular weight distributions. Transition metal-mediated living radical polymerization is a recently developed method that has been developed to overcome these limitations [53, 54]. It permits the synthesis of polymers with varied architectures (for example, blocks, stars, and combs) and with predetermined end groups (e.g., rotaxanes, biomolecules, and dyes). [Pg.329]

Cu-mediated Ullman reaction has been used for the polymerization of dihaloaryls. For example, see ref. 3. This type of polymerization as well as other transition-metal-mediated reactions that involve radicals in the polymerization process is not included in this chapter. [Pg.467]

Besides the numerous examples of anionic/anionic processes, anionic/pericydic domino reactions have become increasingly important and present the second largest group of anionically induced sequences. In contrast, there are only a few examples of anionic/radical, anionic/transition metal-mediated, as well as anionic/re-ductive or anionic/oxidative domino reactions. Anionic/photochemically induced and anionic/enzyme-mediated domino sequences have not been found in the literature during the past few decades. It should be noted that, as a consequence of our definition, anionic/cationic domino processes are not listed, as already stated for cationic/anionic domino processes. Thus, these reactions would require an oxidative and reductive step, respectively, which would be discussed under oxidative or reductive processes. [Pg.48]

Although the generation of nitroalkyl radicals by oxidative transition-metal-mediated reactions is known for many years, their application in carbohydrate chemistry was not investigated until recently.41... [Pg.178]

By far the most generally useful synthetic application of allyltributyltin is in the complementary set of transition metal- and radical-mediated substitution reactions. When the halide substrates are benzylic, allylic, aromatic or acyl, transition metal catalysis is usually the method of choice for allyl transfer from tin to carbon. When the halide (or halide equivalent) substrate is aliphatic or alicyclic, radical chain conditions are appropriate, as g-hydrogen elimination is generally not a problem in these cases. [Pg.182]

Depending on the nature of the active center, chain-growth reactions are subdivided into radicalic, ionic (anionic, cationic), or transition-metal mediated (coordinative, insertion) polymerizations. Accordingly, they can be induced by different initiators or catalysts. Whether a monomer polymerizes via any of these chain-growth reactions - radical, ionic, coordinative - depends on its con-... [Pg.40]

THEMES Free Radical-Mediated Reactions Lewis Acid, Transition Metal-Mediated Reactions... [Pg.505]

The use of hypervalent iodine reagents in carbon-carbon bond forming reactions is summarized with particular emphasis on applications in organic synthesis. The most important recent methods involve the radical decarboxylative alkylation of organic substrates with [bis(acyloxy)iodo]arenes, spirocyclization of para- and ortho-substituted phenols, the intramolecular oxidative coupling of phenol ethers, and the reactions of iodonium salts and ylides. A significant recent research activity is centered in the area of the transition metal-mediated coupling reactions of the alkenyl-, aryl-, and alkynyliodonium salts. [Pg.99]

Intermolecular free-radical additions of stannyl radicals to multiple bonds have emerged as important methods for the preparation of tetraorganostannanes which can be reacted further to afford new C—C bonds through transition metal mediated coupling processes (e.g. Stille coupling). There are numerous examples of this chemistry715-737, and this treatise will focus on a few selected examples. [Pg.1449]

Borane, methanol, and water, which have B-H and O-H bonds too strong to allow participation in radical reactions, are activated towards HAT by complexa-tion with NHCs, boranes, or titanocene(III) complexes. This novel concept has resulted in exciting applications in both radical chain reactions and transition metal mediated and catalyzed transformations. [Pg.118]

This review is concerned with the quantitative aspects of metal-catalysed oxyradical reactions. As such one will find discussions of structures of metal complexes, rate constants and reduction potentials, not unlike our review of 1985 [34], Two areas related to the role of transition metals in radical chemistry and biology have been reviewed recently these are the metal-ion-catalysed oxidation of proteins [35] and the role of iron in oxygen-mediated toxicities [36]. These topics will not be discussed in detail in this review. Related to this work is a review on the role of transition metals in autoxidation reactions [37]. Additional information can be obtained from Afanas ev s two volumes on superoxide [38,39], This subject is also treated in a more general and less quantitative manner by Halliwell and Gutteridge [40],... [Pg.6]

Kadiiska, M NIEHS, NIH Transition metal mediated free radical formation in vitro and in vivo NIEHS... [Pg.154]

Polyethylene glycol in the synthesis of materials. PEG has been used as a solvent in polymerization reactions. It was found to facilitate easy removal of the metal catalyst in transition metal mediated living radical polymerization (Figure 8.10). Products from this type of polymerization are usually heavily contaminated with intensely coloured copper impurities. In the case of methyl methacrylate polymerization the reaction rate was higher than in conventional organic solvents, but for styrene the reaction was slower than in xylene. [Pg.181]

Although a radical intermediate can be written for this transition-metal-mediated reaction, this is not a radical chain reaction because the transition metal reagents are employed in stoichiometric amounts. In addition, if the reaction were to proceed by a chain reaction, one might reasonably expect to obtain a different product (7-59) as a result of hydrogen abstraction. [Pg.449]

There are a number of transition-metal mediated coupling reaction of aromatic substrates that probably proceed by radical coupling. It is also likely that many of these reactions do not proceed by free radicals, but rather by metal-mediated radicals or by ligand transfer on the metal. Reactions in these categories were presented... [Pg.941]

In Chapters 2 through 6 you learned how to draw polar basic, polar acidic, peri-cyclic, free-radical, and transition-metal-mediated and -catalyzed mechanisms. The reactions in the following problems may proceed by any of these mechanisms. Before you solve each problem, then, you need to identify its mechanistic class. See Chapter 1 if you have forgotten how to do so. [Pg.334]

The present second edition of this book corrects two major errors (the mechanisms of substitution of arenediazonium ions and why Wittig reactions proceed) and some minor ones in the first edition. Free-radical reactions in Chapter 5 are reorganized into chain and nonchain processes. The separate treatment of transition-metal-mediated and -catalyzed reactions in Chapter 6 is eliminated, and more in-text problems are added. Some material has been added to various chapters. Finally, the use of italics, especially in Common Error Alerts, has been curtailed. [Pg.368]

Many methods for the preparation of both the a- and )8-C-glycosides have been developed, and new approaches are still appearing in the literature. This chapter covers the literature from the end of 1994 to early 1999, with other inclusions as deemed appropriate. Following the organization of earlier work [1], we select the mode reactivity of the anomeric center to define the category. The chapter discusses free radical chemistry. Cl anions, Wittig chemistry-cyclization chemistry, transition metal mediated chemistry, sigmatropic chemistry, and approaches based on cationic chemistry. The chapter focuses on the most recent and novel developments in the field, but all the relevant references are included whenever possible. [Pg.77]

Type A PCET reactions describe amino acid radical generation steps in many enzymes, since the electron and proton transfer from the same site as a hydrogen atom [188]. Similarly, substrate activation at C-H bonds typically occurs via a Type A configuration at oxidized cofactors such as those in lipoxygenase [47, 48] galactose oxidase [189-191] and ribonucleotide reductase (Y oxidation at the di-iron cofactor, vide infra) [192]. Here, the HATs are more akin to the transition metal mediated reactions of Section 17.3.1 since the final site of the electron and proton are on site differentiated at Ae (redox cofactor) and Ap (a ligand). [Pg.549]


See other pages where Transition-metal-mediated radical is mentioned: [Pg.487]    [Pg.238]    [Pg.341]    [Pg.487]    [Pg.487]    [Pg.238]    [Pg.341]    [Pg.487]    [Pg.332]    [Pg.15]    [Pg.184]    [Pg.129]    [Pg.54]    [Pg.303]    [Pg.332]    [Pg.133]    [Pg.445]    [Pg.155]    [Pg.224]    [Pg.41]    [Pg.42]    [Pg.366]    [Pg.2259]    [Pg.332]    [Pg.68]    [Pg.517]   


SEARCH



Metal mediated

Metal radicals

Metallic radicals

Radical Reaction Mediated by Grignard Reagents in the Presence of Transition Metal Catalyst

Radical mediated

Transition metal-mediated

Transition radical

Transition-metal-mediated radical polymerization

© 2024 chempedia.info