Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal ions acidic

In an aquo-complex, loss of protons from the coordinated water molecules can occur, as with hydrated non-transition metal ions (p. 45). To prevent proton loss by aquo complexes, therefore, acid must usually be added. It is for these conditions that redox potentials in Chapter 4 are usually quoted. Thus, in acid solutions, we have... [Pg.367]

First, the use of water limits the choice of Lewis-acid catalysts. The most active Lewis acids such as BFj, TiQ4 and AlClj react violently with water and cannot be used However, bivalent transition metal ions and trivalent lanthanide ions have proven to be active catalysts in aqueous solution for other organic reactions and are anticipated to be good candidates for the catalysis of aqueous Diels-Alder reactions. [Pg.48]

Inspired by the many hydrolytically-active metallo enzymes encountered in nature, extensive studies have been performed on so-called metallo micelles. These investigations usually focus on mixed micelles of a common surfactant together with a special chelating surfactant that exhibits a high affinity for transition-metal ions. These aggregates can have remarkable catalytic effects on the hydrolysis of activated carboxylic acid esters, phosphate esters and amides. In these reactions the exact role of the metal ion is not clear and may vary from one system to another. However, there are strong indications that the major function of the metal ion is the coordination of hydroxide anion in the Stem region of the micelle where it is in the proximity of the micelle-bound substrate. The first report of catalysis of a hydrolysis reaction by me tall omi cell es stems from 1978. In the years that... [Pg.138]

Multilayers of Diphosphates. One way to find surface reactions that may lead to the formation of SAMs is to look for reactions that result in an insoluble salt. This is the case for phosphate monolayers, based on their highly insoluble salts with tetravalent transition metal ions. In these salts, the phosphates form layer stmctures, one OH group sticking to either side. Thus, replacing the OH with an alkyl chain to form the alkyl phosphonic acid was expected to result in a bilayer stmcture with alkyl chains extending from both sides of the metal phosphate sheet (335). When zirconium (TV) is used the distance between next neighbor alkyl chains is - 0.53 nm, which forces either chain disorder or chain tilt so that VDW attractive interactions can be reestablished. [Pg.543]

Even very small amounts of transition-metal ions like cobalt, nickel, and copper cause rapid decomposition. They form reactive intermediates that can decrease the stabiUty of oxidizable compounds in the bleach solution and increase the damage to substrates. Hypochlorite is also decomposed by uv light (24,25). Acidic solutions also lose available chlorine by the reverse of equations 1 and 2. [Pg.143]

Impurities such as chloride ion or other reducing agents generate chlorine dioxide when the chloric acid solution is heated. Transition-metal ions do not affect the stabiUty of pure chloric acid at room temperature. Thirty-five percent solutions of HCIO have been shown to be stable for 20 days at room temperature containing up to 1000 ppm Ni ", 800 ppm Zn ", 700 ppm Fe ", or 600 ppm Cr " (2). The solubiUty of chloric acid in water is shown in Figure 1. [Pg.494]

Zincon disodium salt (o-[l-(2-bydroxy-5-sulfo)-3-pbenyl-5-formazono]-benzoic acid di-Na salt) [135-52-4, 56484-13-0] M 484.4, m -250-260 (dec). Zincon soln is prepared by dissolving 0.13g of the powder in aqueous N NaOH (2mL diluted to lOOmL with H2O). This gives a deep red colour which is stable for one week. It is a good reagent for zinc ions but also forms stable complexes with transition metal ions. [UV-VIS Bush and Yoe Anal Chem 26 1345 1954 Hunter and Roberts J Chem Soc 820 1941 Platte and Marcy Anal Chem 31 1226 1959] The free acid has been recrystd from dilute H2SO4. [Fichter and Scheiss Chem Ber 33 751 1900.]... [Pg.498]

Essentially all transition metal ions behave like Zn2+, forming a weakly acidic solution. Among the main-group cations, Al3+ and, to a lesser extent, Mg2+, act as weak acids. In contrast the cations in Group 1 show little or no tendency to react with water. [Pg.372]

Persulfate (41) reacts with transition metal ions (e.g. Ag, Fe21, Ti31) according to Scheme 3.42. Various other reduetants have been described. These include halide ions, thiols (e.g. 2-mercaptoethanol, thioglycolic acid, cysteine, thiourea), bisulfite, thiosulfate, amines (triethanolamine, tetramethylethylenediamine, hydrazine hydrate), ascorbic acid, and solvated electrons (e.g. in radiolysis). The mechanisms and the initiating species produced have not been fully elucidated for... [Pg.95]

Metal hydroxides of first- and second-group elements can enhance ortho substitution, the degree of which depends on the strength of metal-chelating effects linking the phenolic oxygen with the formaldehyde as it approaches the ortho position. Transition metal ions of elements such as Fe, Cu, Cr, Ni, Co, Mn, and Zn as well as boric acid also direct ortho substitutions via chelating effects (Fig. 7.9). [Pg.380]

Variable valence transition metal ions, such as Co VCo and Mn /Mn are able to catalyze hydrocarbon autoxidations by increasing the rate of chain initiation. Thus, redox reactions of the metal ions with alkyl hydroperoxides produce chain initiating alkoxy and alkylperoxy radicals (Fig. 6). Interestingly, aromatic percarboxylic acids, which are key intermediates in the oxidation of methylaromatics, were shown by Jones (ref. 10) to oxidize Mn and Co, to the corresponding p-oxodimer of Mn or Co , via a heterolytic mechanism (Fig. 6). [Pg.284]

Deiana S., Micera G., Muggiolu G., Gessa C. Pusino A. (1983) Interaction of transition-metal ions with polygalacturonic acid a potentiometric study. Colloids Surf. 6,17-25. [Pg.539]

Oxygen, in the air, is probably the cheapest, most readily available oxidant and so it is not suprising that industrial processes using this reagent for the oxidation of sulphoxides has been patented. These procedures involve the use of transition metal ion catalysts " in solvents containing acetic acid , acetone and carboxylic acids . [Pg.972]

Nucleophilic substitution reactions, to which the aromatic rings are activated by the presence of the carbonyl groups, are commonly used in the elaboration of the anthraquinone nucleus, particularly for the introduction of hydroxy and amino groups. Commonly these substitution reactions are catalysed by either boric acid or by transition metal ions. As an example, amino and hydroxy groups may be introduced into the anthraquinone system by nucleophilic displacement of sulfonic acid groups. Another example of an industrially useful nucleophilic substitution is the reaction of l-amino-4-bromoanthraquinone-2-sulfonic acid (bromamine acid) (76) with aromatic amines, as shown in Scheme 4.5, to give a series of useful water-soluble blue dyes. The displacement of bromine in these reactions is catalysed markedly by the presence of copper(n) ions. [Pg.87]

Throughout this book a major stress is on catalysis in organisms. Catalysis is confined to non-metals and metal ions of attacking power, either as Lewis acids or in oxidation/reduction and this excludes the simplest ions such as Na+, K+ and Ca2+ (and Cl- among anions). The transition metal ions and zinc are the most available powerful catalysts. The metals in a transition series are known to have selective binding properties, exchange rates and oxidation/reduction states, which can be put to use in catalysis in quite different ways (Table 2.13). It is noticeable that especially the complexes of metal elements... [Pg.72]

Two different processes were used in this study to prepare transition metal (M Fe, Ni, Co) based salts of molybdophosporic acid. They were characterised by BET method, XRD and UV-Vis and IR spectroscopies and tested in isopropanol decomposition at 150°C. The nature of both the added transition metal ion and the synthesis method has an influence on physic-chemical and catalytic properties of solid. [Pg.241]

Cation-selective ionophores are the most successful in polymeric ISEs and selectivi-ties exceeding ten orders of magnitude became quite common. The cation-ionophore binding occurs dominantly due to Lewis interactions and could be understood in terms of hard and soft acid and bases theory (HSAB). While hard base oxygen atoms originate from ester, ether or carbonyl functionalities, and interact with hard acid alkaline cations, the softer sulfur or nitrogen atoms better bind with transition metal ions. Cation... [Pg.121]

The coordination of transition metal ions in acidic chloroaluminate melts has not been firmly established. However, in the case of AICb-EtMelmCI. the E0 values of simple redox systems that are electrochemically accessible in both acidic and basic melt, e.g., Hg(II)/Hg [51], Sb(III)/Sb [52], and Sn(II)/Sn [53] exhibit a large positive potential shift on going from basic melt, where metal ions are known to exist as discrete anionic chloride complexes, to acidic melt. Similar results were observed for Cu(I) in AlCh-NaCl [48]. This dramatic decrease in electrochemical stability isprima facie evidence that metal ions in acidic melt are probably only weakly solvated by anionic species such as AICI4 and AECI-. Additional evidence for this is derived from the results of EXAFS measurements of simple metal ions such Co(II), Mn(II), and Ni(II) in acidic AlCh-EtMelmCl, which indicate that each of these ions is coordinated by three bidentate AICI4 ions to give octahedrally-coordinated species such as [ M (AIC14) 2 ] [54]. Most transition metal chloride compounds are virtually... [Pg.284]

Abstract Amino acids are the basic building blocks in the chemistry of life. This chapter describes the controllable assembly, structures and properties of lathanide(III)-transition metal-amino acid clusters developed recently by our group. The effects on the assembly of several factors of influence, such as presence of a secondary ligand, lanthanides, crystallization conditions, the ratio of metal ions to amino acids, and transition metal ions have been expounded. The dynamic balance of metalloligands and the substitution of weak coordination bonds account for the occurrence of diverse structures in this series of compounds. [Pg.171]


See other pages where Transition metal ions acidic is mentioned: [Pg.389]    [Pg.82]    [Pg.86]    [Pg.180]    [Pg.565]    [Pg.157]    [Pg.47]    [Pg.60]    [Pg.79]    [Pg.1508]    [Pg.14]    [Pg.26]    [Pg.33]    [Pg.102]    [Pg.199]    [Pg.238]    [Pg.463]    [Pg.970]    [Pg.93]    [Pg.700]    [Pg.165]    [Pg.261]    [Pg.107]    [Pg.117]    [Pg.65]    [Pg.515]    [Pg.80]    [Pg.284]    [Pg.309]    [Pg.338]    [Pg.173]   
See also in sourсe #XX -- [ Pg.410 , Pg.424 ]




SEARCH



Transition ions

Transition metal ions

© 2024 chempedia.info