Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Group 2-Transition Metal Complexes

In another process for the synthesis of PPS, as well as other poly(arylene sulfide)s and poly(arylene oxide)s, a pentamethylcyclopentadienylmthenium(I) TT-complex is used to activate -dichlorobenzene toward displacement by a variety of nucleophilic comonomers (92). Important facets of this approach, which allow the polymerization to proceed under mild conditions, are the tremendous activation afforded by the TT-coordinated transition-metal group and the improved solubiUty of the resultant organometaUic derivative of PPS. Decomplexation of the organometaUic derivative polymers may, however, be compHcated by precipitation of the polymer after partial decomplexation. [Pg.445]

Metallacycle fomiation has also been observed in bis-Cp complexes. Heating Cp 2UR[P(Si(CH2)2)2] (R = Cl [146840-37-17, CH [146840-39-3]) results in the metaHation of the phosphido ligand. These complexes are stmcturaHy similar to the group 4 and 6 transition-metal metallacycle complexes, but show a dramatically reduced reactivity. [Pg.334]

The metallocene complexes of M = Ti, Zr, and Hf are most stable when the two Cp groups are not parallel, in contrast to most other transition metal—Cp complexes. The most stable angle for the zirconium metallocenes is ca 40°, which partially accounts for the more interesting chemistry of these compounds compared to other transition metallocenes. [Pg.439]

The acidity of benzylic protons of aromatics complexed to transition-metal groups was first disclosed by Trakanosky and Card with (indane)Cr(CO)3 [61]. Other cases are known with Cr(CO)3 [62], Mn(CO)3 [63], FeCp+ [64, 65], and Fe(arene)2+ [31, 66] but none reported the isolation of deprotonated methyl-substituted complexes. We found that deprotonation of the toluene complex gives an unstable red complex which could be characterized by 13C NMR ( Ch2 = 4.86 ppm vs TMS in CD5CD3) and alkylated by CH3I [58] Eq. (13) ... [Pg.63]

There are three types of electron transfers, firstly the generation of an electron electrochemically, by y-irradiation, or by photolytic dissociation, secondly the transfer of an electron from an inorganic or organic compound, referred to as a nucleophilic homolytic leaving group (Zollinger, 1973 a), and thirdly a transfer from a transition metal or transition metal ion complex. In this section we will discuss the fundamental aspects of these three types. In the following sections and in Chapter 10, specific examples and synthetic applications will be summarized. [Pg.190]

Free carbenes can also be avoided by using transition metal-carbene complexes L M—CRR (L = a ligand, M = a metal),which add the group CRR to double bonds.An example is ... [Pg.1086]

Polysulfides have been prepared with many different types of cations, both monoatomic Hke alkah metal ions and polyatomic Hke ammonium or substituted ammonium or phosphonium ions. In this chapter only those salts will be discussed in detail which contain univalent main-group cations although a large number of transition metal polysulfido complexes have been prepared [7-9]. [Pg.129]

Keywords Sulfur Main group metal Transition metal Polysulfido complex... [Pg.153]

Phosphinidenes [1] are low-valent organophosphorus compounds that have attracted attention since the early 1980s when they were first discovered [2]. They are known in two classifications, one being the six-electron singly substituted phosphorus species (A) and the other in which the phosphorus atom carries an additional ri -stabifizing group, typically, but not necessarily, a transition metal group (B). Much has been learned about the reactivities of the complexed phos-... [Pg.95]

Phosphinidenes differ from carbenes because of the additional lone pair. This lone pair enables interactions with, e.g., a transition metal group for increased stability, while maintaining carbene-hke behavior. These terminal /] -complexed phosphinidenes differ from the p2-> fi3-> and p4-complexes, which are not part of this survey. Phosphinidenes that are stabilized by a transition metal group also relate to carbene complexes. A distinction in Fischer and Schrock-type complexes has been advanced to distinguish phosphinidene complexes with nucleophilic properties from those that are electrophiHc [ 13 ]. In this survey we address this topic in more detail. [Pg.96]

The last decade has seen the development of a rich and varied chemistry for or-ganometallic porphyrin complexes of the early transition metals (groups 3 and 4). However, there have been many fewer developments in the organometallic chemistry of the middle transition elements. Despite the paucity of its organometallic porphyrin compounds, molybdenum has played a very important role in... [Pg.240]

Silicon-transition metal chemistry is a relatively new area. The work of Hein and his associates (1941) on Sn—Co derivatives established the possibility of forming bonds between a Group IVB metal and a transition element 139), but it was another fifteen years before CpFe(CO)2SiMej 203), the first of many silyl derivatives, was synthesized. The interest in these compounds derives from (1) comparison with the corresponding alkyl- and Ge-, Sn-, and Pb- transition metal (M) complexes, including the role of ir-back-bonding from filled d orbitals of M into empty d orbitals on Si (or other Group IVB metal), and (2) expectation of useful catalytic properties from such heteronuclear derivatives. [Pg.254]

Group VIII Transition Metal Dithiocarbamato Complexes.97... [Pg.83]

The first transition metal isonitrilate complex reported was the tetrahedral Co-1 complex [Co(C=NPh )4] where Ph = 2,6-Me2C6H3,96 characterized by a crystal structure analysis. Oxidation yields the zerovalent dimer Co2(C=NPh )8, which features two bridging isonitrile groups. [Pg.9]

The results obtained to date are considerable and show that the chemistry of the TcN group may well be the most varied and interesting of the transition metal nitrido complexes [1,9,10]. The aim of this chapter is to provide a fairly comprehensive review of the literature up to the latter part of 1994. Additional data may be found in two conference volumes [11,12] and a recent review of Tc coordination chemistry [4]. For macroscopic studies with the long-lived "Tc (ti/2 = 2.11 x 10s years) the "Tc radionuclide is denoted simply as Tc. No carrier added studies and radiopharmaceutical applications utilizing the shortlived "mTc radionuclide (ti/2 = 6.01 hours) are denoted as "mTc. [Pg.42]

A variety of Group VIII transition metal phosphine complexes are shown to be active catalysts for hydrogenation of aliphatic nitro compounds. However, chiral phosphines have been found to be noneffective to induce asymmetric induction.110... [Pg.174]

Carbene Complex Geometries. Molecular orbital studies of the various conformations of several transition metal-carbene complexes have been undertaken by the groups of Fenske and Hoffmann (8,13). Of the two... [Pg.124]

The chemistry of transition metal-carbyne complexes is rather less developed than the chemistry of carbene complexes. This is almost certainly because reactions which form new carbyne complexes are relatively rare when compared with those forming metal carbenes. The few theoretical studies of carbyne complexes which are available indicate that close parallels exist between the bonding in carbene and carbyne compounds. These parallels also extend to chemical reactivity, and studies of Group 8 complexes again prove instructive. [Pg.129]

Although transition metal alkylidene complexes, i.e., carbene complexes containing only hydrogen or carbon-based substituents, were first recognized over 15 years ago, it is only relatively recently that Ru, Os, and Ir alkylidene complexes have been characterized. Neutral and cationic complexes of these Group 8 metals are known for both metal electron configurations d8 and d6. The synthesis, structural properties, and reactivity of these compounds are discussed in this section. [Pg.155]

Transition metal carbyne complexes are still relatively uncommon as only a few synthetic approaches to these compounds has proved generally applicable. In addition to making the initial characterization (723), the Fischer group has made the largest contribution to carbyne complex chemistry, with some 200 mononuclear complexes of Group 6 and 7 metals having been prepared. [Pg.181]


See other pages where Group 2-Transition Metal Complexes is mentioned: [Pg.131]    [Pg.11]    [Pg.637]    [Pg.49]    [Pg.259]    [Pg.185]    [Pg.160]    [Pg.153]    [Pg.95]    [Pg.101]    [Pg.109]    [Pg.197]    [Pg.83]    [Pg.83]    [Pg.83]    [Pg.83]    [Pg.83]    [Pg.88]    [Pg.89]    [Pg.91]    [Pg.95]    [Pg.106]    [Pg.21]    [Pg.51]    [Pg.262]    [Pg.117]    [Pg.169]    [Pg.3]    [Pg.161]    [Pg.95]   


SEARCH



Group 14 amides with transition metal complexe

Group 14 compounds transition metal complexes

Group 2-transitional metal complexes

Group 2-transitional metal complexes

Group 5 metal complex

Main group element oxides reactions with transition metal complexes

Metals, 6-Group transition

Mixed-ligand complexes, transition metal group

Silanol complexes with group 9 transition metals

Silyl complexes with group 3 transition metals

Silylene complexes with group 6 transition metals

Transition Group

Transition Metal Complexes with Group

Transition Metal Complexes with Group IVB Elements

Transition Metal Complexes with Group J. F. Young

Transition metal-Group 13 element complexes

Transition metal-Group 13 element complexes characteristics

Transition metal-Group 13 element complexes ionic compounds

Transition metals, dithiocarbamate complexes group

© 2024 chempedia.info