Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal complexes, iron

A large number of organometallic compounds are based on transition metals Examples include organic derivatives of iron nickel chromium platinum and rhodium Many important industrial processes are catalyzed by transition metals or their complexes Before we look at these processes a few words about the structures of transition metal complexes are m order... [Pg.608]

With an atomic number of 28 nickel has the electron conflguration [Ar]4s 3c (ten valence electrons) The 18 electron rule is satisfied by adding to these ten the eight elec Irons from four carbon monoxide ligands A useful point to remember about the 18 electron rule when we discuss some reactions of transition metal complexes is that if the number is less than 18 the metal is considered coordinatively unsaturated and can accept additional ligands... [Pg.608]

Condensation of vinyl chloride with formaldehyde and HCl (Prins reaction) yields 3,3-dichloro-l-propanol [83682-72-8] and 2,3-dichloro-l-propanol [616-23-9]. The 1,1-addition of chloroform [67-66-3] as well as the addition of other polyhalogen compounds to vinyl chloride are cataly2ed by transition-metal complexes (58). In the presence of iron pentacarbonyl [13463-40-6] both bromoform [75-25-2] CHBr, and iodoform [75-47-8] CHl, add to vinyl chloride (59,60). Other useful products of vinyl chloride addition reactions include 2,2-di luoro-4-chloro-l,3-dioxolane [162970-83-4] (61), 2-chloro-l-propanol [78-89-7] (62), 2-chloropropionaldehyde [683-50-1] (63), 4-nitrophenyl-p,p-dichloroethyl ketone [31689-13-1] (64), and p,p-dichloroethyl phenyl sulfone [3123-10-2] (65). [Pg.415]

Although trialkyl- and triarylbismuthines are much weaker donors than the corresponding phosphoms, arsenic, and antimony compounds, they have nevertheless been employed to a considerable extent as ligands in transition metal complexes. The metals coordinated to the bismuth in these complexes include chromium (72—77), cobalt (78,79), iridium (80), iron (77,81,82), manganese (83,84), molybdenum (72,75—77,85—89), nickel (75,79,90,91), niobium (92), rhodium (93,94), silver (95—97), tungsten (72,75—77,87,89), uranium (98), and vanadium (99). The coordination compounds formed from tertiary bismuthines are less stable than those formed from tertiary phosphines, arsines, or stibines. [Pg.131]

Aminoboranes have been used as ligands in complexes with transition metals (66) in one instance giving a rare example of two-coordinate, non-t/ transition-metal complexes. The molecular stmcture of the iron complex Fe[N(Mes)B(Mes)2]2 where Mes = is shown in Figure 1. The... [Pg.263]

Catalytic, enantioselective cyclopropanation enjoys the unique distinction of being the first example of asymmetric catalysis with a transition metal complex. The landmark 1966 report by Nozaki et al. [1] of decomposition of ethyl diazoacetate 3 with a chiral copper (II) salicylamine complex 1 (Scheme 3.1) in the presence of styrene gave birth to a field of endeavor which still today represents one of the major enterprises in chemistry. In view of the enormous growth in the field of asymmetric catalysis over the past four decades, it is somewhat ironic that significant advances in cyclopropanation have only emerged in the past ten years. [Pg.85]

In the nitrone cycloaddition reactions catalyzed by the l ,J -DBFOX/Ph transition metal complexes also, the diastereo- and enantioselectivities were found to depend upon the presence of MS 4 A [71]. Thus, both the selectivities were much lowered in the iron(II) or nickel(II) complex-catalyzed reactions without MS 4 A,... [Pg.270]

Silene-transition metal complexes were proposed by Pannell121 for some iron and tungsten systems, and such species were observed spectroscopically by Wrighton.122,123 Thus intermediates such as 33 have been proposed in the preparation of carbosilane polymers from hydrosilanes,124 both as intermediates in the isotope scrambling observed to occur in similar ruthenium hydride systems125 126 and in the 5N2 addition of alkyllithium species to chlorovinylsilanes.47... [Pg.86]

Of course, commercially available transition metal complexes are stable at room temperature because they have achieved an 18-electron noble gas-like electronic configuration. Thus, molecules like iron pentacarbonyl [Fe(CO)s], ferrocene [Fe(C5H5)2], as well as piano-stool complexes such as C5H5Co(CO)2 are chemically quite inert. In order to study bimolecular reactions, it is necessary to first prepare unsaturated complexes. For studies using molecular beams, one approach is through photolysis of a stable volatile precursor in a supersonic nozzle. [Pg.270]

Copper catalyzes the decomposition of sulphonyl azides in benzene very slowly. When methanesulphonyl azide was boiled under reflux in benzene solution in the presence of an excess of freshly reduced copper powder, some decomposition occurred to give methanesulphonamide and azide was recovered 78>. Transition metal complexes have been found to exert a marked effect upon the yields of products and isomer ratios formed in the thermal decomposition of methanesulphonyl azide in methyl benzoate and in benzotrifluoride 36>. These results will be discussed in detail in the section on the properties of sulphonyl nitrenes and singlet and triplet behaviour. A sulphonyl nitrene-iron complex has recently been isolated 37> and more on this species will be reported soon. [Pg.16]

As mentioned above, in contrast to classic antioxidant vitamins E and C, flavonoids are able to inhibit free radical formation as free radical scavengers and the chelators of transition metals. As far as chelators are concerned their inhibitory activity is a consequence of the formation of transition metal complexes incapable of catalyzing the formation of hydroxyl radicals by the Fenton reaction. In addition, as shown below, some of these complexes, for example, iron- and copper-rutin complexes, may acquire additional antioxidant activity. [Pg.858]

It should also be noted that this polymerization system is not disturbed in the presence of alcohol and water. Similar polymerizations with nickel [278,279] and iron [280] complexes have also been reported. The structures of the transition metal complexes are shown ... [Pg.125]

The NO/NO+ and NO/NO- self-exchange rates are quite slow (42). Therefore, the kinetics of nitric oxide electron transfer reactions are strongly affected by transition metal complexes, particularly by those that are labile and redox active which can serve to promote these reactions. Although iron is the most important metal target for nitric oxide in mammalian biology, other metal centers might also react with NO. For example, both cobalt (in the form of cobalamin) (43,44) and copper (in the form of different types of copper proteins) (45) have been identified as potential NO targets. In addition, a substantial fraction of the bacterial nitrite reductases (which catalyze reduction of NO2 to NO) are copper enzymes (46). The interactions of NO with such metal centers continue to be rich for further exploration. [Pg.220]

As mentioned earlier, the bulky terphenyl thiolate ligand -SC6H3-2,6-Mes2 has been shown to stabilize nominal two-coordination in transition metal complexes.53,54 Figure 30 represents the X-ray crystal structure of the iron derivative, Fe(SC6H3-2,6-Mes2)2.53... [Pg.55]

Nature uses the transition-metal elements iron and nickel, rather than noble metals, and in their ionic form rather than the metals. As will be seen in this book, for the simplest chemical reaction, the metal-ion centres in hydrogenases are some of the most complex catalysts known. Their structures, which have just been elucidated, have proved to be an elegant and totally unexpected solution to the problem. The construction of these catalysts is in itself a molecular assembly line of extraordinary sophistication. [Pg.26]


See other pages where Transition metal complexes, iron is mentioned: [Pg.31]    [Pg.2595]    [Pg.31]    [Pg.2595]    [Pg.169]    [Pg.99]    [Pg.85]    [Pg.237]    [Pg.227]    [Pg.181]    [Pg.4]    [Pg.42]    [Pg.46]    [Pg.116]    [Pg.152]    [Pg.269]    [Pg.120]    [Pg.223]    [Pg.909]    [Pg.470]    [Pg.120]    [Pg.177]    [Pg.64]    [Pg.154]    [Pg.360]    [Pg.170]    [Pg.257]    [Pg.23]    [Pg.125]    [Pg.233]    [Pg.312]    [Pg.192]    [Pg.145]   


SEARCH



Iron complexes transition

Iron metal

Metal Iron Complexes

Transition metal complexes iron phthalocyanine

Transition metal complexes, iron synthesis

Transition metals ferric iron complexes

Transition metals ferrous iron complexes

Transition metals iron

© 2024 chempedia.info