Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal clusters valence electrons

Concelcao J, Laaksonen R T, Wang L S, Guo T, Nordlander P and Smalley R E 1995 Photoelectron spectroscopy of transition metal clusters correlation of valence electronic structure to reactivity Rhys. Rev. B 51 4668... [Pg.2403]

We discuss here two examples of vibronic effects in polynuclear highly symmetrical transition metal clusters. The existence of degenerate and quasi-degenerate molecular orbitals in their energy spectra results in the Jahn-Teller effect or in the vibronic mixing of different electronic states. We show that both quantum-chemical methods and model approaches can provide valuable information about these vibronic effects. In the case of the hexanuclear rhenium tri-anion, the Jahn-Teller effect is responsible for the experimentally observed tetragonal distortion of the cluster. The vibronic model of mixed-valence compounds allows to explain the nature of a transient in the photo-catalytic reaction of the decatungstate cluster. [Pg.389]

According to the 18-electron rule, the bond valence of a transition metal cluster is... [Pg.473]

When the number of metal atoms in a cluster increases, the geometries of the clusters become more complex, and some are often structurally better described in terms of capped or decapped polyhedra and condensed polyhedra. For example, the first and second clusters listed in Table 19.4.3 are a capped octahedron and a bicapped octahedron, respectively. Consequently, capping or decapping with a transition-metal fragment to a deltapolyhedral cluster leads to an increase or decrease in the cluster valence electron count of 12. When a transition-metal atom caps a triangular face of the cluster, it forms three M-M bonds with the vertex atoms, so according to the 18-electron rule, the cluster needs an additional 18 - 6 = 12 electrons. The parent octahedron of [Os6(CO)is]2- has g = 86, the monocapped octahedron Osy(CO)2i has g = 98, and the bicapped octahedron [Oss(CO)22]2- hasg = 110. [Pg.717]

A classical example of correlation of structure with valence electron count of transition-metal clusters is shown in Fig. 19.4.2. There the structures of a series of osmium clusters are systematized by applying the capping and decapping procedures. [Pg.718]

The story begins in this chapter with the clusters of simplest geometric and electronic structure. These are clusters of p-block elements with defined stoichiometry and structure in which the cluster surface-atom valences are terminated with ligands. The large number known provide the factual base from which clever people have derived models that connect atomic composition with structure. In turn, these p-block models provide a foundation on which to build an understanding of more complex clusters such as condensed clusters, bare clusters and transition-metal clusters. A more comprehensive account of the structural chemistry will be found in older books and reviews, a selection of which will be found in the reading list at the end of each chapter. [Pg.33]

As discussed earlier, it is now possible to make and study deposits of monosized, highly dispersed, transition metal clusters.(S) In this section we summarize results from the first measurements of the valence and core level photoemission spectra of mass selected, monodispersed platinum clusters. The samples are prepared by depositing single size clusters either on amorphous carbon or upon the natural silica layer of a silicon wafer. We allow the deposition to proceed until about 10 per cent of the surface in a 0.25 cm2 area is covered. For samples consisting of the platinum atom through the six atom duster, we have measured the evolution of the individual valence band electronic structure and the Pt 4f... [Pg.183]

The electronic state calculations of transition metal clusters have been carried out to study the basic electronic properties of these elements by the use of DV-Xa molecular orbital method. It is found that the covalent bonding between neighboring atoms, namely the short range chemical interaction is very important to determine the valence band structure of transition element. The spin polarization in the transition metal cluster has been investigated and the mechanism of the magnetic interaction between the atomic spins has been interpreted by means of the spin polarized molecular orbital description. For heavy elements like 5d transition metals, the relativistic effects are found to be very important even in the valence electronic state. [Pg.80]


See other pages where Transition metal clusters valence electrons is mentioned: [Pg.24]    [Pg.2391]    [Pg.66]    [Pg.80]    [Pg.84]    [Pg.80]    [Pg.702]    [Pg.200]    [Pg.2]    [Pg.15]    [Pg.232]    [Pg.486]    [Pg.306]    [Pg.27]    [Pg.704]    [Pg.704]    [Pg.225]    [Pg.77]    [Pg.112]    [Pg.88]    [Pg.88]    [Pg.111]    [Pg.143]    [Pg.143]    [Pg.187]    [Pg.1215]    [Pg.1216]    [Pg.1228]    [Pg.1746]    [Pg.1747]    [Pg.281]    [Pg.172]    [Pg.583]    [Pg.584]    [Pg.285]    [Pg.7]    [Pg.17]    [Pg.20]    [Pg.20]    [Pg.36]    [Pg.663]   
See also in sourсe #XX -- [ Pg.20 ]




SEARCH



Cluster valence electron

Electron clusters

Electronic transition, valence

Metal valence

Transition metal clusters

Valence electron

Valence electrons Valency

© 2024 chempedia.info