Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal catalysts alcohol oxidation

Transesterification of methyl methacrylate with the appropriate alcohol is often the preferred method of preparing higher alkyl and functional methacrylates. The reaction is driven to completion by the use of excess methyl methacrylate and by removal of the methyl methacrylate—methanol a2eotrope. A variety of catalysts have been used, including acids and bases and transition-metal compounds such as dialkjitin oxides (57), titanium(IV) alkoxides (58), and zirconium acetoacetate (59). The use of the transition-metal catalysts allows reaction under nearly neutral conditions and is therefore more tolerant of sensitive functionality in the ester alcohol moiety. In addition, transition-metal catalysts often exhibit higher selectivities than acidic catalysts, particularly with respect to by-product ether formation. [Pg.248]

Early attempts by Asinger to enlarge the scope of hydroalumination by the use of transition metal catalysts included the conversion of mixtures of isomeric linear alkenes into linear alcohols by hydroalumination with BU3AI or BU2AIH at temperatures as high as 110°C and subsequent oxidation of the formed organoaluminum compounds [12]. Simple transition metal salts were used as catalysts, including tita-nium(IV) and zirconium(IV) chlorides and oxochlorides. The role of the transition metal in these reactions is likely limited to the isomerization of internal alkenes to terminal ones since no catalyst is required for the hydroalumination of a terminal alkene under these reaction conditions. [Pg.49]

The oxidation of alcohols is an important reaction in organic chemistry. While this transformation is traditionally performed in organic solvents, the use of aqueous orgarric solutions has just recently become a field of intense study (1-6). The effect of water on transition metal-catalyzed reactions, however, remains widely unexplored as most of these reactions require dry organic solvents to avoid decomposition of the transition metal catalyst, of water sensitive reagents, and/or intermediates by a nucleophilic attack of water (1). Comparative studies focusing on the effect of water as a co-solvent on the catalyst and the proceedings of a reaction are therefore rare (7). [Pg.473]

Recently, great advancement has been made in the use of air and oxygen as the oxidant for the oxidation of alcohols in aqueous media. Both transition-metal catalysts and organocatalysts have been developed. Complexes of various transition-metals such as cobalt,31 copper [Cu(I) and Cu(II)],32 Fe(III),33 Co/Mn/Br-system,34 Ru(III and IV),35 and V0P04 2H20,36 have been used to catalyze aerobic oxidations of alcohols. Cu(I) complex-based catalytic aerobic oxidations provide a model of copper(I)-containing oxidase in nature.37 Palladium complexes such as water-soluble Pd-bathophenanthroline are selective catalysts for aerobic oxidation of a wide range of alcohols to aldehydes, ketones, and carboxylic acids in a biphasic... [Pg.150]

The epoxidation of enones using chiral phase transfer catalysis (PTC) is an emerging technology that does not use transition metal catalysts. Lygo and To described the use of anthracenylmethyl derivatives of a cinchona alkaloid that are capable of catalyzing the epoxidation of enones with remarkable levels of asymmetric control and a one pot method for oxidation of the aUyl alcohol directly into... [Pg.25]

A similar problem was encountered by the ROMP of a borane substituted cyclooctene with an early transition metal catalyst followed by oxidation to yield an alcohol-functionalized linear polymer (32). [Pg.23]

Oxidations of carbon-heteroatom species often results in the destruction of a stereogenic center, as in the oxidation of a secondary alcohol to a ketone. In some instances, this reaction can be coupled with another to provide a chiral product (see Chapter 21). One example is the enzymatic acetylation of one enantiomer of a secondary alcohol, where a redox reaction with a transition metal catalyst equilibrates the unreactive isomer of the alcohol (Scheme 9.1).10 12 The redox reaction can also be performed by an enzyme.13... [Pg.124]

The development of simple systems that allow for the asymmetric oxidation of allyl alcohols and simple alkenes to epoxides or 1,2-diols has had a great impact on synthetic methodology as it allows for the introduction of functionality with concurrent formation of one or two stereogenic centers. This functionality can then be used for subsequent reactions tliat usually fall into the substitution reaction class. Because these transition metal catalysts do not require the use of low temperatures to ensure high degrees of induction, they can be considered robust. However, the sometimes low catalyst turnover numbers and the synthesis of the substrate can still be crucial economic factors. Aspects of asymmetric oxidations are discussed in Chapter 12. [Pg.6]

A new variant of the Sharpless epoxidation is a one-pot procedure. It is known that on photochemical oxidation of olefins in the presence of tetraphenylporphine the corresponding allyl hydroperoxides are formed. The latter were partly reduced into allylic alcohols, which were epoxidized by the remaining hydroperoxide in the presence of transition metal catalysts. By addition of l-(+)-DET to the photochemical oxidation of 2,3,3-trimethyl but-l-ene, Adam et al. [16] succeded in preparing the (S)-epoxy alcohol in a good yield, while the epoxidation under standard conditions delivers only a smaller amount of product (Scheme 10). [Pg.70]

Metal Free Transition metal catalysts are highly effective for C—H bond activation. However, transition metal complexes are not only expensive, but also difficult to remove from the reaction products, resulting in toxicity concerns. DDQ is a well-known oxidant in organic chemistry [33]. For many years, it has been used for the oxidation of alcohols to ketones and aromatization. The first intermolecular C—C bond formation was realized by DDQ-mediated Mukaiyama-type aldol reactions [34], The reactions of electron-rich benzyl ethers and silyl enol ethers afforded 3-alkoxy-3-phenylpropionyl derivatives at ambient temperature with moderate to excellent yields (Equation 11.12). [Pg.342]

CsHgC, Mr 136.15, pi.85kPa 132 °C, df 1.1192, n 1.5703, occurs in many essential oils, often together with anethole. It is a colorless to slightly yellowish liquid with a sweet, mimosa, hawthorn odor. p-Anisaldehyde can be hydrogenated to anise alcohol and readily oxidizes to anisic acid when exposed to air. Synthetic routes to anisaldehyde start from p-cresyl methyl ether, which is oxidized e.g. by manganese dioxide or by oxygen or peroxy compounds in the presence of transition metal catalysts [170], [171]. [Pg.140]

Sulfides react faster with hydrogen peroxide and alkyl hydroperoxides than do alkenes. For this reason, transition metal catalysts are rarely necessary, but these reactions are acid catalyzed and first order in both sulfide and peroxide. The acid (HX) can be as weak as alcohol or water but the "effectiveness (of the oxidation) is determined by the pXa of the acid. Sulfides also react faster with peroxides than do ketones (see the Baeyer-Villiger reaction, sec. 3.6). Formation of the sulfone in these reactions is straightforward, but requires more vigorous reaction conditions. It is usually easy to isolate the sulfoxide from oxidation of a sulfide. Direct conversion of a sulfide to a sulfone requires excess peroxide and vigorous reaction conditions (heating, long reaction times, more concentrated peroxide). [Pg.280]

Remarkably, catalytic hydroboration of arylethenes (styrenes) using a cationic rhodium complex occurs with unconventional regioselectivity. Essentially complete selectivity for the secondary alcohol (formed after oxidation of the organoborane) is obtained by using the complex [Rh(COD)2]Bp4 in the presence of a phosphine ligand (5.14). This contrasts with that obtained in the absence of a catalyst, or in the presence of neutral transition-metal catalysts. [Pg.320]

Various oxidations with [bis(acyloxy)iodo]arenes are also effectively catalyzed by transition metal salts and complexes [726]. (Diacetoxyiodo)benzene is occasionally used instead of iodosylbenzene as the terminal oxidant in biomimetic oxygenations catalyzed by metalloporphyrins and other transition metal complexes [727-729]. Primary and secondary alcohols can be selectively oxidized to the corresponding carbonyl compounds by PhI(OAc)2 in the presence of transition metal catalysts, such as RuCls [730-732], Ru(Pybox)(Pydic) complex [733], polymer-micelle incarcerated ruthenium catalysts [734], chiral-Mn(salen)-complexes [735,736], Mn(TPP)CN/Im catalytic system [737] and (salen)Cr(III) complexes [738]. The epox-idation of alkenes, such as stilbenes, indene and 1-methylcyclohexene, using (diacetoxyiodo)benzene in the presence of chiral binaphthyl ruthenium(III) catalysts (5 mol%) has also been reported however, the enantioselectivity of this reaction was low (4% ee) [739]. [Pg.252]

Li and coworkers developed an effective system for the oxidation of alcohols under an atmosphere of oxygen, without the need for any additional solvent or transition metal catalyst, by using catalytic amounts of (diacetoxyiodo)benzene, TEMPO (2,2,6,6-tetramethylpiperidine-l-oxyl) and potassium nitrate (Scheme 4.56) [88]. A tentative mechanism for this catalytic oxidation involves the oxoammonium cation 109, which... [Pg.364]


See other pages where Transition metal catalysts alcohol oxidation is mentioned: [Pg.99]    [Pg.389]    [Pg.187]    [Pg.188]    [Pg.135]    [Pg.191]    [Pg.294]    [Pg.150]    [Pg.175]    [Pg.238]    [Pg.452]    [Pg.108]    [Pg.391]    [Pg.1494]    [Pg.391]    [Pg.521]    [Pg.313]    [Pg.389]    [Pg.425]    [Pg.653]    [Pg.352]    [Pg.169]    [Pg.138]    [Pg.1200]    [Pg.430]    [Pg.306]    [Pg.552]    [Pg.389]    [Pg.131]    [Pg.20]    [Pg.124]    [Pg.388]    [Pg.251]   


SEARCH



Catalysts metal oxidation

Metal alcohol oxidation

Metal alcoholates

Metal alcohols

Metal oxide catalysts

Metal oxides, catalysts oxidation

Metalation alcohols

Oxidation catalysts alcohols

Transition catalyst

Transition metal oxidation catalysts

Transition metal oxide

Transition metal oxide oxides

Transition metals oxidation

Transition oxides

© 2024 chempedia.info