Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition carbonyl compounds

It was established in the 1970s that XeF2 in solution was a valuable means of introducing fluorine oxidatively into transition carbonyl compounds to produce carbonyl fluorides (216, 217). Recently, there has been renewed activity in this area, supported by the improvements in multinuclear Fourier-Transform NMR techniques. Among... [Pg.89]

Tertiary stibines have been widely employed as ligands in a variety of transition metal complexes (99), and they appear to have numerous uses in synthetic organic chemistry (66), eg, for the olefination of carbonyl compounds (100). They have also been used for the formation of semiconductors by the metal—organic chemical vapor deposition process (101), as catalysts or cocatalysts for a number of polymerization reactions (102), as ingredients of light-sensitive substances (103), and for many other industrial purposes. [Pg.207]

Polymerization of olefins such as styrene is promoted by acid or base or sodium catalysts, and polyethylene is made with homogeneous peroxides. Condensation polymerization is catalyzed by acid-type catalysts such as metal oxides and sulfonic acids. Addition polymerization is used mainly for olefins, diolefins, and some carbonyl compounds. For these processes, initiators are coordination compounds such as Ziegler-type catalysts, of which halides of transition metals Ti, V, Mo, and W are important examples. [Pg.2095]

Three-dimensional potential energy diagrams of the type discussed in connection with the variable E2 transition state theory for elimination reactions can be used to consider structural effects on the reactivity of carbonyl compounds and the tetrahedral intermediates involved in carbonyl-group reactions. Many of these reactions involve the formation or breaking of two separate bonds. This is the case in the first stage of acetal hydrolysis, which involves both a proton transfer and breaking of a C—O bond. The overall reaction might take place in several ways. There are two mechanistic extremes ... [Pg.454]

The second step in acetal and ketal hydrolysis is conversion of the hemiacetal or hemiketal to the carbonyl compound. The mechanism of this step is similar to that of the first step. Usually, the second step is faster than the initial one. Hammett a p plots and solvent isotope effects both indicate that the transition state has less cationic character than... [Pg.455]

The irradiation is usually carried out with light of the near UV region, in order to activate only ihc n n transition of the carbonyl function," thus generating excited carbonyl species. Depending on the substrate, it can be a singlet or triplet excited state. With aromatic carbonyl compounds, the reactive species are usually in a Ti-state, while with aliphatic carbonyl compounds the reactive species are in a Si-state. An excited carbonyl species reacts with a ground state alkene molecule to form an exciplex, from which in turn diradical species can be formed—e.g. 4 and 5 in the following example ... [Pg.221]

Upon addition of a base—triethylamine is often used—the sulfonium salt 7 is deprotonated to give a sulfonium ylide 8. The latter decomposes into the carbonyl compound 2 and dimethyl sulfide 9 through /3-elimination via a cyclic transition state. [Pg.276]

In contrast to the open-chain and dipolar models, which are based on conformations of the carbonyl compound not representing energy minima, Karabatsos proposed a different model assuming an early, reactant-like transition state in which the most stable conformation of the free carbonyl compound is preserved1314. Thus, the C-M bond eclipses the carbonyl double bond and, in order to minimize the energy of the transition state, the nucleophile approaches close to the small substituent on the stereogenic center (Figure 5). [Pg.3]

The transition state for the nucleophilic addition reaction to a carbonyl compound is essentially reactant-hke , rather than product-like . [Pg.3]

In the transition state, the torsional strain involving the partially formed bond between the nucleophile and the carbonyl group represents a substantial fraction of the total strain, even when the degree of bonding is low. Thus, in the case of acyclic carbonyl compounds, a staggered conformation is preferred in the transition state (Figure 6). [Pg.3]

With a-alkyl-substituted chiral carbonyl compounds bearing an alkoxy group in the -position, the diastereoselectivity of nucleophilic addition reactions is influenced not only by steric factors, which can be described by the models of Cram and Felkin (see Section 1.3.1.1.), but also by a possible coordination of the nucleophile counterion with the /J-oxygen atom. Thus, coordination of the metal cation with the carbonyl oxygen and the /J-alkoxy substituent leads to a chelated transition state 1 which implies attack of the nucleophile from the least hindered side, opposite to the pseudoequatorial substituent R1. Therefore, the anb-diastereomer 2 should be formed in excess. With respect to the stereogenic center in the a-position, the predominant formation of the anft-diastereomer means that anti-Cram selectivity has occurred. [Pg.36]

I-Oialkoxy carbonyl compounds are a special class of chiral alkoxy carbonyl compounds because they combine the structural features, and, therefore, also the stereochemical behavior, of 7-alkoxy and /i-alkoxy carbonyl compounds. Prediction of the stereochemical outcome of nucleophilic additions to these substrates is very difficult and often impossible. As exemplified with isopropylidene glyceraldehyde (Table 15), one of the most widely investigated a,/J-di-alkoxy carbonyl compoundsI0S, the predominant formation of the syn-diastereomer 2 may be attributed to the formation of the a-chelate 1 A. The opposite stereochemistry can be rationalized by assuming the Felkin-Anh-type transition state IB. Formation of the /(-chelate 1C, which stabilizes the Felkin-Anh transition state, also leads to the predominant formation of the atm -diastereomeric reaction product. [Pg.70]

As a consequence of the pericyclic reaction path, the addition of a-stereogenic allylmctals to carbonyl compounds is accompanied by an effective 1,3-chirality transfer in the allylic moiety combined with 1,4-chira induction at the prostereogenic carbonyl group3032. The scheme also demonstrates the importance of the orientation of the substituent X in the six-membered transition state. By changing from a pseudo-axial to a pseudo-equatorial position, the cation-induced sy/i-attack addresses opposite faces of both prostereogenic moieties, leading to a Z-and an -isomer, these being enantiomeric in respect to the chiral moiety. [Pg.215]

Enantiomerically enriched l-(diisopropylaminocarbonyloxy)allyllithium derivatives (Section 1.3.3.3.1.2.) add to carbonyl compounds with syn-l,3-chirality transfer21, giving good evidence for a pericyclic transition state in the main reaction path (Section 1.3.3.1.). However, since the simple diastereoselectivity and the degree of chirality transfer are low, for synthetic purposes a metal exchange with titanium reagents or trialkyltin halides (Section D.1.3.3.3.8.2.3.) is recommended. [Pg.247]

Allylboron compounds have proven to be an exceedingly useful class of allylmetal reagents for the stereoselective synthesis of homoallylic alcohols via reactions with carbonyl compounds, especially aldehydes1. The reactions of allylboron compounds and aldehydes proceed by way of cyclic transition states with predictable transmission of olefinic stereochemistry to anti (from L-alkene precursors) or syn (from Z-alkene precursors) relationships about the newly formed carbon-carbon bond. This stereochemical feature, classified as simple diastereoselection, is general for Type I allylorganometallicslb. [Pg.260]

For a detailed transition state analysis of the reactions of allylorganometallic reagents and carbonyl compounds ... [Pg.310]

However, this is not true for the addition of carbonyl compounds to (Z)-2-alkenyltitanium, which also proceeds with moderate anti selectivity and requires a (twist) boat transition state16,51. [Pg.406]

In spite of the steric and electronic differences, the nucleophilic addition of enolates to imines (aza aldoi reaction) proceeds probably through similar pericyclic transition states as the carbonyl compounds do. [Pg.758]

Vibrational spectra of transition metal carbonyl compounds. L. M. Haines and M. H. B. Stiddard, Adv, Inorg. Chem. Radiochem., 1969,12, 53-133 (340). [Pg.29]


See other pages where Transition carbonyl compounds is mentioned: [Pg.685]    [Pg.685]    [Pg.226]    [Pg.106]    [Pg.319]    [Pg.320]    [Pg.107]    [Pg.324]    [Pg.101]    [Pg.121]    [Pg.152]    [Pg.314]    [Pg.323]    [Pg.227]    [Pg.215]    [Pg.400]    [Pg.293]    [Pg.5]    [Pg.61]    [Pg.67]    [Pg.78]    [Pg.137]    [Pg.147]    [Pg.211]    [Pg.320]    [Pg.434]    [Pg.104]    [Pg.98]    [Pg.121]    [Pg.22]    [Pg.104]   
See also in sourсe #XX -- [ Pg.34 ]




SEARCH



Carbonyl compounds transition metal catalysts

Carbonyl compounds, Group 6 transition

Carbonyl transition

Transition compounds

Transition metal carbonyl compounds

Transition metal carbonyl nitrosyl compound

Transition metal hydrides carbonyl compounds

Transition metal hydrides unsaturated carbonyl compounds

Transition metal ions carbonyl compounds

© 2024 chempedia.info