Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tosylamidations

Sodium / -toluenesulfoiiainide (319) reacts with the allylic lactone 318 to give an allylic tosylamide with retention of configuration[196]. [Pg.333]

Dialkylation of an amine or sulfonamide with a 1,3-dihalide provides a further route to azetidines <79CRV33l, 64HC( 19-2)88 5). Examples of this approach are the formation of N-tosylazetidine from tosylamide and l-bromo-3-chloropropane and the formation of N-alkylazetidinyl esters (36). The latter reaction works well except for R=Me the former provides a useful route to azetidine since the tosyl group can be removed by reductive methods. [Pg.244]

Electrolysis, Me4N Cl , 5°, 65-98% yield. " Acylation of a tosylated amine with BOC or benzoyl reduces the potential required for electrolytic cleavage so that these aryltosyl groups can be selectively removed in the presence of a simple tosylamide. °... [Pg.605]

Die kathodische Reduktion von N,N-Dichlor-tosylamid fiihrt zum entsprechenden Ni-tren, in Gegenwart von 1,4-Dioxan entsteht neben Tosylamid (Graphit-Kathode, max. 90% d.Th.) bis zu 32% d.Th. (Platin) 2-Tosylamino-J,4-dioxan (in Acetonitril/Lithium-perchlorat)3. [Pg.697]

The reaction can be done intramolecularly. N-Benzyl pent-4-ynamide reacted with tetrabutylammonium fluoride to an alkylidene lactam. Similar addition of a tosylamide-alkene, with a palladium catalyst, led to a vinyl Al-tosyl pyrrolidine. Similar cyclization reactions occur with tosylamide-alkynes. ... [Pg.1002]

Similar reactions have been carried out on acetylene. Aldehydes add to alkynes in the presence of a rhodium catalyst to give conjugated ketones. In a cyclic version of the addition of aldehydes, 4-pentenal was converted to cyclopen-tanone with a rhodium-complex catalyst. In the presence of a palladium catalyst, a tosylamide group added to an alkene unit to generate A-tosylpyrrolidine derivatives. ... [Pg.1034]

Larock has developed a new catalyst system for the Pd-catalyzed cyclization of olefinic tosylamides. Whereas typical conditions require either stoichiometric amounts of Pd(II) salts or catalytic amounts of Pd(II) in the presence of benzoquinone as a reoxidant, the new catalyst system utilizes catalytic Pd(OAc)2 under an atmosphere of O2 in DMSO with no additional reoxidant <96JOC3584>. Although o-vinylic tosylamides 76 can be cyclized to Af-tosylindoles 77 using this catalyst system, PdCla/benzoquinone is more effective for such cyclizations. Interestingly, in the case of o-allylic tosylanilides, the cyclization can be modulated to afford either dihydroindole or dihydroquinoline products. In a related approach involving a common 7i-aUyl Pd-intermediate, 2-iodoanilines were coupled with vinylic cyclopropanes or cyclobutanes in the presence of a Pd catalyst to afford dihydroindoles <96T2743>. [Pg.105]

Hydroaminomethylahon of alkenes [path (c)j wiU not be considered [12]. This review deals exclusively with the hydroaminahon reaction [path (d)], i.e. the direct addition of the N-H bond of NH3 or amines across unsaturated carbon-carbon bonds. It is devoted to the state of the art for the catalytic hydroamination of alkenes and styrenes but also of alkynes, 1,3-dienes and allenes, with no mention of activated substrates (such as Michael acceptors) for which the hydroamination occurs without catalysts. Similarly, the reachon of the N-H bond of amine derivatives such as carboxamides, tosylamides, ureas, etc. will not be considered. [Pg.92]

The conjugate hydrosilylation of a,/S-unsaturated amides can be carried out in high yields with PhSiH3/Mo(CO)6 (Eq. 297)450 or Ph2SiH2/ZnCl2/Pd(PPh3)4.436 Primary, secondary, and tertiary amides are equally reactive 450 The reduction of a J3 -tribu ty I s (annyl-a, /3 -unsaturatcd tosylamide is also reported 469... [Pg.96]

As shown in the manganese- and ruthenium-catalyzed intermolecular nitrene insertions, most of these results supposed the transfer of a nitrene group from iminoiodanes of formula PhI=NR to substrates that contain a somewhat activated carbon-hydrogen bond (Scheme 14). Allylic or benzylic C-H bonds, C-H bonds a to oxygen, and very recently, Q spz)-Y bonds of heterocycles have been the preferred reaction sites for the above catalytic systems, whereas very few examples of the tosylamidation of unactivated C-H bonds have been reported to date. [Pg.206]

Vedejs et al. reported catalyst inhibition during a study on the enantioselective transfer hydrogenation of dihydro-isoquinolines using Noyori s catalyst (Scheme 44.2) [27]. Here, the problem is caused by the bidentate nature of the substrate. Whereas the bromo compound 1 a could be rapidly reduced, the tosylamide-sub-stituted compound lb could not be reduced, and although the problem could be alleviated somewhat by alkylation of the sulfmamide to 1 c, hydrogenation of this was still sluggish. Although the authors propose this to be a case of product... [Pg.1494]

Propargylated tosylamides also isomerize efficiently [221, 281]. On the other hand, rare examples are propargylated hydrazines [251], N-propargylated imines [282], isonitriles (must be N-propargylated) [283], ammonium salts [284] and azides [285],... [Pg.22]

Tetrahydropyridines can be obtained from the tosylamides 172 with AgBF4 in dichloromethane 173 was isolated in excellent yield (Scheme 15.54) [112]. [Pg.904]

The nucleophilic addition of lithiated methoxyallene to N-tosylimines delivers tosylamides 174. Treatment of the latter with AgN03 leads cleanly to dihydropyrroles 175, which under acidic conditions provide pyrrolidin-3-ones 176. Another example is the reaction of 177 to 178 (Scheme 15.55) [113]. [Pg.905]

An additional means of performing a selective cross-benzoin was reported in 2001 when Mnrry and co-workers expanded benzoin methodology to include trapping of acyl imines XIX formed in situ (Scheme 6) [53], The authors chose to use a-amido sulfones due to their stability and the relative ease of acyl imine liberation. The parent reaction combines pyridine 4-carboxaldehyde 51 and tosylamide 52 in 98% yield in the presence of pre-catalyst 54 and triethylamine (Scheme 6). [Pg.89]

Miller and co-workers have reported the use of thiazolylalanine-derived catalyst 65 to render the aldehyde-imine cross-coupling enantioselective [56]. The authors comment on the time sensitivity of this transformation and found that racemization occurs when the reaction goes to complete conversion. Electron-deficient aldehydes are the most efficient couphng partners for various tosylamides leading to the corresponding products 66, 68, and 69 (Scheme 8). [Pg.90]

The unique reactivity pattern of alkynyl iodonium salts discussed in Sections II,A.2 and II,D,la can also serve as two-carbon conjunctive reagents in the synthesis of pyrroles, dihydropyrroles, and indoles. Feldman et al. found that combination of alkyl or aralkyl tosylamide anions 101 with phenyl(propynyl)iodonium triflate (102) furnishes the corresponding dihydropyrroles 103 (95JOC7722) (Scheme 28). [Pg.28]

Intramolecular bicyclization of tosylamide with alkynyliodonium salt (see Scheme 31), developed by Feldman and co-workers (95JA7544), is also applicable to the synthesis of A-tosylpiperidine derivatives related to polycyclic alkaloids (Eq. 40). Examples leading to seven-membered rings have also been reported. [Pg.56]

The cross-conjugated trienes have potential in many different types of diversification strategies. For example, the triene clearly lends itself to inter- and intramolecular Diels-Alder reactions. Incorporation of the hydroxymethyl group on the tether allows attachment of functionality suitable for reactions subsequent to the Alder-ene reactions. As depicted in Scheme 8.5, propargyl tosylamides A, alkynyl silanes B, acrylate esters C, and propargyl ethers D can all be readily prepared from 39... [Pg.166]

The trienes were then subjected to a formal Diels-Alder reaction using conditions developed by Gilbertson and others (Scheme 8.7) [34]. The propargyl tosylamide 40 and the propargyl ether 43 have both afforded the formal intramolecular Diels-Alder adducts 44 and 45 in high yield. To date, the formal cycloaddition of the siHcon-teth-ered alkyne 41 has not been affected and heating triene 42 led to a thermal Diels-Alder reaction to furnish cycloadduct 46, albeit in lower yield than the corresponding rhodium-catalyzed examples. [Pg.167]

IS the tosylamide of cyclooctylurea. Glipizide (163) is synthesized from 5-methylpyrazine-2-carboxylic acid (161) and 4-(2-aminoethyl)benzene sulfonamide to give sulfonamide 162, which forms glipizide (163) on reaction with cyclohexylisocyanate and base in acetone. [Pg.623]

Alkene metathesis, promoted by the allenylidene-ruthenium complexes, was revealed in the RCM of diallyl tosylamide [12]. The first studies showed some significant influences [31, 32]. [Pg.253]

The isomerization of terminal epoxyalkynes into furans catalyzed by RuCl(Tp)(PPh3) (MeCN) inthe presence of Et3N as abase at 80 °C in 1,2-dichloroethaneis explained by a related intramolecular nucleophilic addition of the oxygen atom of the epoxide to the a-carbon atom of a ruthenium vinylidene intermediate, as shovm by deuteration in the 3-position of the furan (Scheme 10.10) [45]. This reaction is specific for terminal alkynes and tolerates a variety of functional groups (ether, ester, acetal, tosylamide, nitrile). [Pg.321]

Jeong described desymmetrization of dienynes, such as iV-propargyl-jY-(penta-l,4-dien-3-yl) tosylamides, by the asymmetric Ir(i)-based PK-type reaction. The corresponding vinyl-substituted bicyclo[3,3,0]-octenones were obtained with high diastereoselectivity and enantioselectivity (Equation (36)). ... [Pg.357]

Gyclization/hydrosilylation of enynes catalyzed by rhodium carbonyl complexes tolerated a number of functional groups, including acetate esters, benzyl ethers, acetals, tosylamides, and allyl- and benzylamines (Table 3, entries 6-14). The reaction of diallyl-2-propynylamine is noteworthy as this transformation displayed high selectivity for cyclization of the enyne moiety rather than the diene moiety (Table 3, entry 9). Rhodium-catalyzed enyne cyclization/hydrosilylation tolerated substitution at the alkyne carbon (Table 3, entry 5) and, in some cases, at both the allylic and terminal alkenyl carbon atoms (Equation (7)). [Pg.374]

Shibata and co-workers have reported an effective protocol for the cyclization/hydrosilylation of functionalized eneallenes catalyzed by mononuclear rhodium carbonyl complexes.For example, reaction of tosylamide 13 (X = NTs, R = Me) with triethoxysilane catalyzed by Rh(acac)(GO)2 in toluene at 60 °G gave protected pyrrolidine 14 in 82% yield with >20 1 diastereoselectivity and with exclusive delivery of the silane to the G=G bond of the eneallene (Equation (10)). Whereas trimethoxysilane gave results comparable to those obtained with triethoxysilane, employment of dimethylphenylsilane or a trialkylsilane led to significantly diminished yields of 14. Although effective rhodium-catalyzed cyclization/hydrosilylation was restricted to eneallenes that possessed terminal disubstitution of the allene moiety, the protocol tolerated both alkyl and aryl substitution on the terminal alkyne carbon atom and was applicable to the synthesis of cyclopentanes, pyrrolidines, and tetrahydrofurans (Equation (10)). [Pg.376]

Yu and co-workers have expanded upon Ojima s work through development of an effective Rh-catalyzed protocol for the cyclization/hydrosilylation of allenyl carbonyl compounds to form silylated vinylcycloalkanols and heterocyclic alcohols.For example, reaction of tosylamide 44 (X = NTs, R = H, n= ) and triethylsilane catalyzed by Rh(acac)(GO)2 (1 mol%) under GO (10 atm) at 70 °G for 8h gave the silylated vinyl pyrrolidinol 45 (X = NTs, R = H, n= ) in 74% yield with exclusive formation of the m-diastereomer (Equation (29)). The rhodium-catalyzed reaction was also effective for the cyclization of alleneones and for the formation of carbocycles, oxygen heterocycles, and six-membered cyclic alcohols (Equation (29)). However, Rh-catalyzed cyclization/hydrosilylation of allenyl carbonyl compounds that possessed substitution on an allenyl carbon atom was not established (Equation (29)). The efficiency of the Rh-catalyzed reaction of allenyl carbonyl compounds depended strongly on GO pressure. Reactions run under 10 atm GO were more efficient than were... [Pg.387]

In the reaction of parent propargyl amine, unidentified intractable materials are formed even under relatively mild conditions. However, selective silylformylation at the alkynyl moiety proceeds by reducing the nucleophilicity of the amino group as tosylamide or carbamate (Table 5). ... [Pg.480]


See other pages where Tosylamidations is mentioned: [Pg.44]    [Pg.336]    [Pg.130]    [Pg.117]    [Pg.117]    [Pg.580]    [Pg.665]    [Pg.91]    [Pg.346]    [Pg.567]    [Pg.710]    [Pg.720]    [Pg.217]    [Pg.748]    [Pg.34]    [Pg.361]    [Pg.623]    [Pg.98]    [Pg.375]    [Pg.395]    [Pg.402]    [Pg.496]   
See also in sourсe #XX -- [ Pg.166 , Pg.167 ]




SEARCH



Amidation tosylamide

N-Tosylamides

Tosylamidate ions

Tosylamidations allylic/benzylic

Tosylamide

Tosylamide

Tosylamide cascades

Tosylamide derivatives

Tosylamide-based cyclisations

Tosylamides

Tosylamides

Tosylamides, cyclization

© 2024 chempedia.info