Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tools molecular level

Interactions between macromolecules (protems, lipids, DNA,.. . ) or biological structures (e.g. membranes) are considerably more complex than the interactions described m the two preceding paragraphs. The sum of all biological mteractions at the molecular level is the basis of the complex mechanisms of life. In addition to computer simulations, direct force measurements [98], especially the surface forces apparatus, represent an invaluable tool to help understand the molecular interactions in biological systems. [Pg.1741]

Computer simulations therefore have several inter-related objectives. In the long term one would hope that molecular level simulations of structure and bonding in liquid crystal systems would become sufficiently predictive so as to remove the need for costly and time-consuming synthesis of many compounds in order to optimise certain properties. In this way, predictive simulations would become a routine tool in the design of new materials. Predictive, in this sense, refers to calculations without reference to experimental results. Such calculations are said to be from first principles or ab initio. As a step toward this goal, simulations of properties at the molecular level can be used to parametrise interaction potentials for use in the study of phase behaviour and condensed phase properties such as elastic constants, viscosities, molecular diffusion and reorientational motion with maximum specificity to real systems. Another role of ab initio computer simulation lies in its interaction... [Pg.4]

Adsorption phenomena from solutions onto sohd surfaces have been one of the important subjects in colloid and surface chemistry. Sophisticated application of adsorption has been demonstrated recently in the formation of self-assembhng monolayers and multilayers on various substrates [4,7], However, only a limited number of researchers have been devoted to the study of adsorption in binary hquid systems. The adsorption isotherm and colloidal stabihty measmement have been the main tools for these studies. The molecular level of characterization is needed to elucidate the phenomenon. We have employed the combination of smface forces measmement and Fomier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR) to study the preferential (selective) adsorption of alcohol (methanol, ethanol, and propanol) onto glass surfaces from their binary mixtures with cyclohexane. Om studies have demonstrated the cluster formation of alcohol adsorbed on the surfaces and the long-range attraction associated with such adsorption. We may call these clusters macroclusters, because the thickness of the adsorbed alcohol layer is about 15 mn, which is quite large compared to the size of the alcohol. The following describes the results for the ethanol-cycohexane mixtures [10],... [Pg.3]

In the past three decades, industrial polymerization research and development aimed at controlling average polymer properties such as molecular weight averages, melt flow index and copolymer composition. These properties were modeled using either first principle models or empirical models represented by differential equations or statistical model equations. However, recent advances in polymerization chemistry, polymerization catalysis, polymer characterization techniques, and computational tools are making the molecular level design and control of polymer microstructure a reality. [Pg.109]

In industry, the emphasis is mainly on developing an active, selective, stable and mechanically robust catalyst. To accomplish this, tools are needed which identify those structural properties that discriminate efficient from less efficient catalysts. All information that helps to achieve this is welcome. Empirical relationships between those factors that govern catalyst composition (e.g. particle size and shape, and pore dimensions) and those that determine catalytic performance are extremely useful in catalyst development, although they do not always give fundamental insights into how the catalyst operates on the molecular level. [Pg.129]

We have already mentioned that fundamental studies in catalysis often require the use of single crystals or other model systems. As catalyst characterization in academic research aims to determine the surface composition on the molecular level under the conditions where the catalyst does its work, one can in principle adopt two approaches. The first is to model the catalytic surface, for example with that of a single crystal. By using the appropriate combination of surface science tools, the desired characterization on the atomic scale is certainly possible in favorable cases. However, although one may be able to study the catalytic properties of such samples under realistic conditions (pressures of 1 atm or higher), most of the characterization is necessarily carried out in ultrahigh vacuum, and not under reaction conditions. [Pg.166]

Another result of the cold-fusion epopee that was positive for electrochemistry are the advances in the experimental investigation and interpretation of isotope effects in electrochemical kinetics. Additional smdies of isotope effects were conducted in the protium-deuterium-tritium system, which had received a great deal of attention previously now these effects have become an even more powerful tool for work directed at determining the mechanisms of electrode reactions, including work at the molecular level. Strong procedural advances have been possible not only in electrochemistry but also in the other areas. [Pg.633]

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool that can provide the binding sites of Ugand-DNA interactions at the molecular level. A prerequisite for the examination of ligand-DNA complexes is assignment of all resonances in the NMR spectra of the free DNA and the ligand and of both components in the complex. [Pg.171]

DNA analysis has become an invaluable tool having very many practical applications that aim to open new frontiers in science. The sequencing of the human genome will provide information that could be applied to the study of genetic disorders as well as complications affecting the behaviour of humans at molecular level. [Pg.171]

While methods employing radiaoactive tracer techniques have become a classical tool for the study of adsorption on electrodes, optical methods for the study of electrodes and processes occurring on them at an atomic or molecular level have undergone enormously rapid progress, which is characteristic for the contemporary development of electrochemistry. [Pg.339]

Spectroscopic techniques, carried out in in situ and operando conditions, obviously represent powerful tools for the description of the reactions and the catalysts in running conditions. In fact, the exigency of the scientist to look at the chemical process at a molecular level cannot only address the traditional kinetics modelling, where the reactor itself behaves as a black box. The use of spectroscopy allows monitoring the catalytic material under duty, directly revealing species and transformations, which can then support the hypothesis made for mathematical calculations applied to a kinetic model [1],... [Pg.98]

Rate considerations have enormous practical implications to anyone working with polymers. As an example, it may be possible to make an incredible new polymer, but would we be able to profitably commercialize this super new polymer if its polymerization took weeks, months, or even years to occur Rather obviously, the answer is no . Therefore, we must study the rates of reactions in an effort to understand how to produce materials in the time scales we have at our disposal. The study of kinetics provides us with the tools and the knowledge necessary to understand the rates of the polymerization reactions that are important to us. Kinetic studies allow us to understand the energetic considerations necessary for a reaction to progress. We also gain the tools to propose mechanisms that describe how a reaction actually occurs at the molecular level. [Pg.81]

Carotenoid absorption and metabolism have been comprehensively reviewed (Erdman et al., 1993 Parker, 1996 van Vliet, 1996 Furr and Clark, 1997 Yeum and Russell, 2002) and this chapter will focus only on recent advances in these areas. A particular emphasis will be placed on studies that used in vitro and cell culture models as tools to understand better the mechanisms of absorption on the molecular level. [Pg.369]

Table 5 Selected biochemical responses and diagnostic tools for assessment of the environmental biota health at the molecular level [50]... Table 5 Selected biochemical responses and diagnostic tools for assessment of the environmental biota health at the molecular level [50]...
Modem science and medicine have made great strides in the previous decade in the diagnosis and study of disease. Nonetheless, early disease detection capabilities must be improved. Also, new tools are needed for the study of diseases such as cancer, Alzheimer s, heart disease, and many others to enable greater progress toward cure and prevention. Today, the field of optical biosensing is poised to develop tools that will enable earlier diagnosis and that will allow scientists to better study diseases at the molecular level, leading to the development of cures and prevention methods. [Pg.377]


See other pages where Tools molecular level is mentioned: [Pg.1685]    [Pg.5]    [Pg.531]    [Pg.5]    [Pg.79]    [Pg.14]    [Pg.172]    [Pg.396]    [Pg.19]    [Pg.134]    [Pg.68]    [Pg.36]    [Pg.51]    [Pg.52]    [Pg.35]    [Pg.13]    [Pg.706]    [Pg.123]    [Pg.97]    [Pg.418]    [Pg.44]    [Pg.222]    [Pg.190]    [Pg.298]    [Pg.130]    [Pg.332]    [Pg.69]    [Pg.73]    [Pg.94]    [Pg.116]    [Pg.173]    [Pg.57]    [Pg.129]    [Pg.248]    [Pg.27]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Molecular level

Molecular tools

© 2024 chempedia.info