Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Toluene photochemically

A flow-type photochemical reaction system (Fig. 8.4) was developed for studying toluene photochemical reactions in the presence of Ti02 with/without 02, H20 or NO, because toluene is the most abundant volatile organic compound in air, and Ti02 has such a remarkable photocatalytic activity as mentioned above and is present in airborne and soil particles at an order of about 1 %. [Pg.251]

Benzyl chloride is manufactured by the thermal or photochemical chlorination of toluene at 65—100°C (37). At lower temperatures the amount of ring-chlorinated by-products is increased. The chlorination is usually carried to no more than about 50% toluene conversion in order to minimize the amount of benzal chloride formed. Overall yield based on toluene is more than 90%. Various materials, including phosphoms pentachloride, have been reported to catalyze the side-chain chlorination. These compounds and others such as amides also reduce ring chlorination by complexing metallic impurities (38). [Pg.59]

It is evident from the nature of the products, especially those formed with toluene present, that the photoreaction in weakly acidic medium involves incursion of a radical species. The complete suppression of reactions leading to the above products, in the presence of oxygen, strongly suggests that it is an excited triplet trityl ion which undergoes reaction. It is postulated that the primary photochemical process is the abstraction of a hydrogen atom by the triplet trityl ion to form the radical cation 90, which was proposed as an intermediate in the dimerization reactions carried out in strong acid (Cole, 1970). [Pg.148]

The dimerization of ketones to 1,2-diols can also be accomplished photochemi-cally indeed, this is one of the most common photochemical reactions. The substrate, which is usually a diaryl or aryl alkyl ketone (though a few aromatic aldehydes and dialkyl ketones have been dimerized), is irradiated with UV light in the presence of a hydrogen donor such as isopropyl alcohol, toluene, or an amine. In the case of benzophenone, irradiated in the presence of 2-propanol, the ketone molecule initially undergoes n — k excitation, and the singlet species thus formed crosses to the T, state with a very high efficiency. [Pg.1560]

No electrophilic aromatic substitution reactions of toluene, ethylbenzene, and cumene occur with BBrj in the dark the electrophile is too weak for these reactions. The photochemical reactions followed by hydrolysis give the p-isomers of the corresponding boronic acids as the major products (delocalization band in Scheme 9) [44]. [Pg.34]

In chemically-cured materials, one example of an initiator/activator system is hydrogen peroxide as initiator, ascorbic acid as activator and cupric sulphate as co-activator. In light-cured materials, camphorquinone is used as a visible-light photochemical initiator, sodium p-toluene-sulphinate as activator and ethyl 4-dimethylaminobenzoate as photoaccelerator. [Pg.171]

The side-chain substitution of toluene, p-chlorotoluene, etc. is industrially practised. This reaction is carried out in a photochemical reactor. It is an exothermic reaction in which HCl is produced. The reaction is consecutive, and hence CL first reacts with toluene reacts to form the desired benzyl chloride, which is then converted to benzal chloride, and finally benzotrichloride. We may, however, well be interested in the selectivity to benzyl chloride. An additional complication arises due to nuclear chlorination, which is most undesirable. A distillation-column reactor can offer advantages (Xu and Dudukovic, 1999). [Pg.417]

Photophysical and Photochemical Pathways, and Quantum Yields (< ) of P-Carotene and Canthaxanthin in Deaerated Toluene Solution at 25°C... [Pg.240]

Brubaker and Tung were able to prepare 27 photochemically by the irradiation of a toluene solution of bis(i7-pentamethylcyclopentadienyl)di-phenyltitanium in the presence of CO (63). [Pg.337]

Photochemical decomposition of diazomethane yields methylene, which reacts with benzene to form toluene and cycloheptatriene (via norcaradiene) (Scheme 5).65 66... [Pg.265]

Several Ru(III) salen complexes of the type Ruin(salen)(X)(NO) (X=C1-, ONO-, H20 salen = N,AP-bis(salicylidene)-ethylenediamine dianion) have been examined as possible photochemical NO precursors (19). Photo-excitation of the Rum(salen)(NO)(X) complex labilizes NO to form the respective solvento species Ruin(salen)(X)(Sol). The kinetics of the subsequent back reactions to reform the nitrosyl complexes (e.g. Eq. (8)) were studied as a function of the nature of the solvent (Sol) and reaction conditions. The reaction rates are dramatically dependent on the identity of Sol, with values of kNO (298 K, X = C1-) varying from 5 x 10-4 M-1 s-1 in acetonitrile to 4 x 107 M-1 s-1 in toluene, a much weaker electron donor. In this case, Rum Sol bond breaking clearly... [Pg.207]

Photolytic. Based on data for structurally similar compounds, acenaphthylene may undergo photolysis to yield quinones (U.S. EPA, 1985). In a toluene solution, irradiation of acenaphthylene at various temperatures and concentrations all resulted in the formation of dimers. In water, ozonation products included 1,8-naphthalene dialdehyde, 1,8-naphthalene anhydride, 1,2-epoxyacenaphthylene, and 1-naphthoic acid. In methanol, ozonation products included 1,8-naphthalene dialdehyde, 1,8-naphthalene anhydride, methyl 8-formyl-1-naphthoate, and dimethoxyacetal 1,8-naphthalene dialdehyde (Chen et al., 1979). Acenaphthylene reacts with photochemically produced OH radicals and ozone in the atmosphere. The rate constants and corresponding half-life for the vapor-phase reaction of acenaphthylene with OH radicals (500,000/cm ) at 25 °C are 8.44 x lO " cmVmolecule-sec and 5 h, respectively. The rate constants and corresponding half-life for the vapor-phase reaction of acenaphthylene with ozone at 25 °C are... [Pg.52]

Jang and McDow (1997) studied the photodegradation of benzo[a]anthracene in the presence of three common constituents of atmospheric aerosols reported to accelerate benzo [a] anthracene, namely 9,10-anthroquinone, 9-xanthone, and vanillin. The photo-degradation experiments were conducted using a photochemical reactor equipped with a 450-W medium pressure mercury arc lamp and a water bath to maintain the solution temperature at 16 °C. The concentration of benzo [a] anthracene and co-solutes was 10" M. Irradiation experiments were conducted in toluene, benzene, and benzene-c/e- Products identified by GC/MS, FTIR, and NMR included benzo[a]an-thracene-7,12-dione, phthalic acid, phthalic anhydride, 1,2-benzenedicarboxaldehyde, naphtha-lene-2,3-dicarboxylic acid/anhydride, 7,12-dihydrobenzo[a]anthracene, 10-benzyl-10-hydroan-thracen-9-one, benzyl alcohol, and 1,2-diphenylethanol. [Pg.134]

The photochemical addition of some cyclic oligosilanes to Ceo has also been found interesting. Scheme 8.8 shows some examples of such a transformation. Irradiation (X > 300 nm) of a toluene solution of disilirane 36 with Ceo afforded the fullerene derivative 37 in a 82% yield [37]. The reaction mechanism is still unknown. When toluene is replaced by benzonitrile the bis-silylated product of the solvent was obtained in good yields. In these experiments a photoinduced electron transfer between 36 and Ceo is demonstrated, indicating the role of Ceo as sensitizer [38]. The photoinduced reactions of disilirane 36 with higher fullerenes such as C70, Cv8(C2v)and CuiDi) have also been reported... [Pg.201]

Some quantitative conclusions on TTA processes can be made after examination of the concrete case of ZnTPP - a porphyrin which is widely used in photochemical research. For ZnTPP in toluene ka = 3.109 1 sec mole-1 (19), P = 0.24 (6), kd = 1.1 ... [Pg.126]


See other pages where Toluene photochemically is mentioned: [Pg.67]    [Pg.141]    [Pg.103]    [Pg.27]    [Pg.1087]    [Pg.873]    [Pg.246]    [Pg.156]    [Pg.453]    [Pg.215]    [Pg.220]    [Pg.85]    [Pg.159]    [Pg.193]    [Pg.283]    [Pg.284]    [Pg.285]    [Pg.287]    [Pg.182]    [Pg.311]    [Pg.43]    [Pg.242]    [Pg.263]    [Pg.1092]    [Pg.1180]    [Pg.247]    [Pg.197]    [Pg.68]    [Pg.78]    [Pg.74]    [Pg.49]    [Pg.223]    [Pg.100]    [Pg.347]   
See also in sourсe #XX -- [ Pg.302 ]




SEARCH



© 2024 chempedia.info