Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photochemical reaction types

We have seen (Section I) that there are two types of loops that are phase inverting upon completing a round hip an i one and an ip one. A schematic representation of these loops is shown in Figure 10. The other two options, p and i p loops do not contain a conical intersection. Let us assume that A is the reactant, B the desired product, and C the third anchor. In an ip loop, any one of the three reaction may be the phase-inverting one, including the B C one. Thus, the A B reaction may be phase preserving, and still B may be attainable by a photochemical reaction. This is in apparent contradiction with predictions based on the Woodward-Hoffmann rules (see Section Vni). The different options are summarized in Figure 11. [Pg.347]

We will show here the classification procedure with a specific dataset [28]. A reaction center, the addition of a C-H bond to a C=C double bond, was chosen that comprised a variety of different reaction types such as Michael additions, Friedel-Crafts alkylation of aromatic compounds by alkenes, or photochemical reactions. We wanted to see whether these different reaction types can be discerned by this... [Pg.193]

In addition to photoisomerization, there are reversible photochemical reactions of special types for asymmetrical polymethines, produciag sphopyranes (84—86) as ia equation 6, where X = NR, S, or C(CH2)2-... [Pg.496]

Photochemical Reactions. Increased knowledge of the centraUty of quinone chemistry in photosynthesis has stimulated renewed interest in their photochemical behavior. Synthetically interesting work has centered on the 1,4-quinones and the two reaction types most frequentiy observed, ie [2 A 2] cycloaddition and hydrogen abstraction. Excellent reviews of these reactions, along with mechanistic discussion, are available (34,35). [Pg.408]

The chemical uses of tungsten have increased substantially in more recent years. Catalysis (qv) of photochemical reactions and newer types of soluble organometaUic complexes for industrially important organic reactions are among the areas of these new applications. [Pg.287]

Although some of the oxidative ring closures described above, e.g. reactions with lead tetraacetate (Section 4.03.4.1.2), may actually involve radical intermediates, little use has been made of this reaction type in the synthesis of five-membered rings with two or more heteroatoms. Radical intermediates involved in photochemical transformations are described in Section 4.03.9. Free radical substitutions are described in the various monograph chapters. [Pg.141]

The photochemical reactions of organic compounds attracted great interest in the 1960s. As a result, many useful and fascinating reactions were uncovered, and photochemistry is now an important synthetic tool in organic chemistry. A firm basis for mechanistic description of many photochemical reactions has been developed. Some of the more general types of photochemical reactions will be discussed in this chapter. In Section 13.2, the relationship of photochemical reactions to the principles of orbital symmetry will be considered. In later sections, characteristic photochemical reactions of alkenes, dienes, carbonyl compounds, and aromatic rings will be introduced. [Pg.743]

The complementary relationship between thermal and photochemical reactions can be illustrated by considering some of the same reaction types discussed in Chapter 11 and applying orbital symmetry considerations to the photochemical mode of reaction. The case of [2ti + 2ti] cycloaddition of two alkenes can serve as an example. This reaction was classified as a forbidden thermal reaction (Section 11.3) The correlation diagram for cycloaddition of two ethylene molecules (Fig. 13.2) shows that the ground-state molecules would lead to an excited state of cyclobutane and that the cycloaddition would therefore involve a prohibitive thermal activation energy. [Pg.747]

Reaction type Number of electrons Thermally allowed Photochemically allowed... [Pg.363]

Carbonyl compounds can undergo various photochemical reactions among the most important are two types of reactions that are named after Norrish. The term Norrish type I fragmentation refers to a photochemical reaction of a carbonyl compound 1 where a bond between carbonyl group and an a-carbon is cleaved homolytically. The resulting radical species 2 and 3 can further react by decarbonylation, disproportionation or recombination, to yield a variety of products. [Pg.212]

The first experimental evidence with the relevant theoretical background of this type of photochemical reaction was given by Koerner Von Gustorf and Grevels [11]. The product Me(CO)n-i can combine with carbon... [Pg.245]

We have also used poly(propynoic acid) in our studies of the photochemical interaction of PCSs with dienophiles, such as maleic anhydride, tetracyanoethylene, and styrene. This photochemical reaction of Diels-Alder type is accompanied by the breakdown of the conjugation system and the formation of slightly colored adducts266. Together with the cycloaddition reaction, photodegradation of PPA and its adducts takes place. A cycloaddition reaction is always preceded by the formation of a donor-acceptor complex of a PCS with a dienophile. [Pg.31]

We cover each of these types of examples in separate chapters of this book, but there is a clear connection as well. In all of these examples, the main factor that maintains thermodynamic disequilibrium is the living biosphere. Without the biosphere, some abiotic photochemical reactions would proceed, as would reactions associated with volcanism. But without the continuous production of oxygen in photosynthesis, various oxidation processes (e.g., with reduced organic matter at the Earth s surface, reduced sulfur or iron compounds in rocks and sediments) would consume free O2 and move the atmosphere towards thermodynamic equilibrium. The present-day chemical functioning of the planet is thus intimately tied to the biosphere. [Pg.7]

The material is arranged as follows. Photochemical reactions are discussed first (Section VI,A) as they represent the most thoroughly studied and only definitely established examples of the simplest type of reaction, viz., the homolytic fission of the Co—C bond. Thermal (i.e., nonphotochemical)... [Pg.402]

Reactor type Photochemical Reaction flow-through 500 pm 50 pm... [Pg.416]

Conical intersections are involved in other types of chemistry in addition to photochemistry. Photochemical reactions are nonadiabatic because they involve at least two potential energy surfaces, and decay from the excited state to the ground state takes place as shown, for example, in Figure 9.2a. However, there are also other types of nonadiabatic chemistry, which start on the ground state, followed by an ex-cnrsion npward onto the excited state (Fig. 9.2b). Electron transfer problems belong to this class of nonadiabatic chemistry, and we have documented conical intersection... [Pg.381]

Photocycloaddition of Alkenes and Dienes. Photochemical cycloadditions provide a method that is often complementary to thermal cycloadditions with regard to the types of compounds that can be prepared. The theoretical basis for this complementary relationship between thermal and photochemical modes of reaction lies in orbital symmetry relationships, as discussed in Chapter 10 of Part A. The reaction types permitted by photochemical excitation that are particularly useful for synthesis are [2 + 2] additions between two carbon-carbon double bonds and [2+2] additions of alkenes and carbonyl groups to form oxetanes. Photochemical cycloadditions are often not concerted processes because in many cases the reactive excited state is a triplet. The initial adduct is a triplet 1,4-diradical that must undergo spin inversion before product formation is complete. Stereospecificity is lost if the intermediate 1,4-diradical undergoes bond rotation faster than ring closure. [Pg.544]

There are several reactions that are conceptually related to carbene reactions but do not involve carbene, or even carbenoid, intermediates. Usually, these are reactions in which the generation of a carbene is circumvented by a concerted rearrangement process. Important examples of this type are the thermal and photochemical reactions of a-diazo ketones. When a-diazo ketones are decomposed thermally or photochemically, they usually rearrange to ketenes, in a reaction known as the Wolff rearrangement.232... [Pg.941]

The physical basis of spectroscopy is the interaction of light with matter. The main types of interaction of electromagnetic radiation with matter are absorption, reflection, excitation-emission (fluorescence, phosphorescence, luminescence), scattering, diffraction, and photochemical reaction (absorbance and bond breaking). Radiation damage may occur. Traditionally, spectroscopy is the measurement of light intensity... [Pg.299]

By carrying out photolyses in liquid nitrogen- or liquid helium-cooled infrared cells using a special low-temperature apparatus (see Figure 4.2), one is often able to obtain direct spectroscopic evidence for intermediates of photochemical reactions. In this section we will briefly review how low-temperature techniques have been used to observe intermediates in type I cleavage reactions. [Pg.86]

In general ketones undergo three main types of photochemical reactions. These are ... [Pg.344]

The other photochemical reactions of simple carbonyls mentioned earlier in this chapter—type I cleavage (a-cleavage) and oxetane formation—will be discussed in Chapter 4. [Pg.370]

In Chapter 3 we discussed two photochemical reactions characteristic of simple carbonyl compounds, namely type II cleavage and photoreduction. We saw that photoreduction appears to arise only from carbonyl triplet states, whereas type II cleavage often arises from both the excited singlet and triplet states. Each process was found to occur from discrete biradical intermediates. In this chapter we will discuss two other reactions observed in the photochemistry of carbonyls, type I cleavage and oxetane formation. [Pg.374]

A range of thermal and photochemical reactions of this type of compounds was discussed in CHEC-II(1996) <1996CHEC-II(8)747>. Only examples bringing some novel aspects are included here. [Pg.386]


See other pages where Photochemical reaction types is mentioned: [Pg.428]    [Pg.59]    [Pg.59]    [Pg.428]    [Pg.59]    [Pg.59]    [Pg.329]    [Pg.376]    [Pg.1291]    [Pg.125]    [Pg.153]    [Pg.221]    [Pg.801]    [Pg.282]    [Pg.105]    [Pg.317]    [Pg.1000]    [Pg.21]    [Pg.127]    [Pg.159]    [Pg.517]    [Pg.10]    [Pg.5]    [Pg.343]    [Pg.80]    [Pg.127]   
See also in sourсe #XX -- [ Pg.223 ]




SEARCH



Photochemical types

Types of photochemical reactions

© 2024 chempedia.info