Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

To-Bromoacetates

NHNP-NBE inactivates irreversibly the hormone-dependent adenylate cyclase activity, whereas the fluoride-stimulated activity remains intact. Bromoacetic acid as well as bromoacetamide causes enzyme inactivation at concentrations two orders of magnitude higher than those obtained with NHNP-NBE. Other bromoacetyl derivatives of propranolol, e.g., BHNPK (Fig. 2), - which do not react specifically with the /J-receptor, were similar in behavior to bromoacetic acid (see below) and bromoacetamide. Specific binding of [ H] propranolol to the /8-receptor was inhibited irreversibly by the compound NHNP-NBE. ... [Pg.600]

Cyclic ethers are cleaved to < -bromoacetates using Magnesium Bromide and acetic anhydride in acetonitrile (eq 47). ... [Pg.5]

The Reformatsky Reaction consists of the interaction of an ester of an a-halogeno-acid with an aldehyde, a ketone or another ester in the presence of zinc. For example, if a mixture of ethyl bromoacetate and benzaldehyde is heated with zinc, the latter undoubtedly first combines with the ethyl bromoacetate to form a Grignard-like reagent (reaction A), which then adds on to the benzaldehyde Just as a Grignard reagent would do (reaction B). The complex so formed, on acidification gives ethyl p-phenyl-p-hydroxy-propionate (reaction C). Note that reaction A could not satisfactorily be carried out using... [Pg.286]

Preparation of REAOENTS.t It is essential for this preparation that the zinc powder should be in an active condition. For this purpose, it is usually sufficient if a sample of ordinary technical zinc powder is vigorously shaken in a flask with pure ether, and then filtered off at the pump, washed once with ether, quickly drained and without delay transferred to a vacuum desiccator. If, however, an impure sample of zinc dust fails to respond to this treatment, it should be vigorously stirred in a beaker with 5% aqueous sodium hydroxide solution until an effervescence of hydrogen occurs, and then filtered at the pump, washed thoroughly with distilled water, and then rapidly with ethanol and ether, and dried as before in a vacuum desiccator. The ethyl bromoacetate (b.p. 159 ) and the benzaldehyde (b.p. 179 ) should be dried and distilled before use. [Pg.287]

A 1500 ml. flask is fitted (preferably by means of a three-necked adaptor) with a rubber-sleeved or mercury-sealed stirrer (Fig. 20, p. 39), a reflux water-condenser, and a dropping-funnel cf. Fig. 23(c), p. 45, in which only a two-necked adaptor is shown or Fig. 23(G)). The dried zinc powder (20 g.) is placed in the flask, and a solution of 28 ml. of ethyl bromoacetate and 32 ml. of benzaldehyde in 40 ml. of dry benzene containing 5 ml. of dry ether is placed in the dropping-funnel. Approximately 10 ml. of this solution is run on to the zinc powder, and the mixture allowed to remain unstirred until (usually within a few minutes) a vigorous reaction occurs. (If no reaction occurs, warm the mixture on the water-bath until the reaction starts.) The stirrer is now started, and the rest of the solution allowed to run in drop-wise over a period of about 30 minutes so that the initial reaction is steadily maintained. The flask is then heated on a water-bath for 30 minutes with continuous stirring, and is then cooled in an ice-water bath. The well-stirred product is then hydrolysed by the addition of 120 ml. of 10% sulphuric acid. The mixture is transferred to a separating-funnel, the lower aqueous layer discarded, and the upper benzene layer then... [Pg.287]

Bromoacetic acid must not be allowed to come into contact with the hands as it causes serious bums. [Pg.429]

Ethyl bromoacetate (1). Fit a large modified Dean and Stark apparatus provided with a stopcock at the lower end (a convenient size is shown in Fig. Ill, 126, 1) to the 1-htre flask containing the crude bromoacetic acid of the previous preparation and attach a double surface condenser to the upper end. Mix the acid with 155 ml. of absolute ethyl alcohol, 240 ml. of sodium-dried benzene and 1 ml. of concentrated sulphuric acid. Heat the flask on a water bath water, benzene and alcohol will collect in the special apparatus and separate into two layers, the lower layer consisting of approximately 50 per cent, alcohol. Run ofi the lower layer (ca. 75 ml.), which includes all the water formed in the... [Pg.429]

Ethyl bromoacetate vapour is extremely irritating to the eyes. The preparation must therefore be conducted in a fume cupboard provided with a good draught the material should be kept in closed vessels as far as possible. [Pg.430]

Great caro must be exercised in handling ethyl bromoacetate. Keep a 10 per cent, aqueous ammonia solution available to react with any bromoester which may be spilled. [Pg.875]

The reaction can be applied to allyl malonates. Alkylation of diallyl mal-onate (734) with bromoacetate and acetoxymethylation afford the mixed triester 735. Treatment of the tricster 735 with Pd catalyst affords allyl ethyl itaconate (736). In a similar way, a-methylene lactone and the lactam 737 can be prepared[462]. [Pg.391]

Owing to the instability of a-halogenoaldehydes it is occasionally preferable to use more stable derivatives, such as enol acetate prepared according to Bedoukian s method (204) and a-bromoacetals (4, 8, 10, 16, 22, 67, 101, 426). An advantage is said to be in the yield however, this appears to be slight. The derivatives react in the same sense as the aldehydes themselves, that is, the acetal group as the more polarized reacts first and enters the C-4 position. It is likely that the condensation and cyclization occur by direct displacement of alkoxide ions. Ethyl-a,/3-dihalogeno ethers (159, 164, 177, 248) have also been used in place of the free aldehydes in condensation with thioamides. [Pg.175]

Beecham P-lactamase iiihibitoi BRL 42715 [102209-75-6] (89, R = Na), C IlgN O SNa (105). Lithium diphenylamide, a weaker base, was used to generate the anion of (88) which on sequential treatment with l-methyl-l,2,3-ttia2ole-4-carbaldehyde and acetic anhydride gives a mixture of diastereomers of the bromoacetate (90). Reductive elimination then provided the (Z)-penem (89, R = d5 Q [ OC15 -p) as major product which on Lewis acid mediated deprotection gave BRL 42715 (89, R = Na). [Pg.14]

There are several laboratory methods useful for the preparation of suberic acid. One starting material is 1,6-hexanediol which can be converted to the dibromide with HBr. Reaction of the dibromide with NaCN gives the dinitrile which can be hydrolyzed to suberic acid. The overall yield is 76% (42). Another laboratory method is the condensation of 1,3-cyclohexanedione with ethyl bromoacetate foUowed by reductive cleavage to give suberic acid in 50% yield (43). [Pg.62]

Medium Boiling Esters. Esterificatioa of ethyl and propyl alcohols, ethylene glycol, and glycerol with various acids, eg, chloro- or bromoacetic, or pymvic, by the use of a third component such as bensene, toluene, hexane, cyclohexane, or carbon tetrachloride to remove the water produced is quite common. Bensene has been used as a co-solvent ia the preparatioa of methyl pymvate from pymvic acid (101). The preparatioa of ethyl lactate is described as an example of the general procedure (102). A mixture of 1 mol 80% lactic acid and 2.3 mol 95% ethyl alcohol is added to a volume of benzene equal to half that of the alcohol (ca 43 mL), and the resulting mixture is refluxed for several hours. When distilled, the overhead condensate separates iato layers. The lower layer is extracted to recover the benzene and alcohol, and the water is discarded. The upper layer is returned to the column for reflux. After all the water is removed from the reaction mixture, the excess of alcohol and benzene is removed by distillation, and the ester is fractionated to isolate the pure ester. [Pg.382]

Thiazolines and thiazolidines may also be prepared in this fashion, the structure of the final product determining the substitution pattern to be chosen in the reaction components. Reaction of ethyl bromoacetate with the substituted thioamide (71) resulted in formation of the thiazolidin-4-one (72) (70KGS1621). [Pg.118]

Lehn and his coworkers have prepared a number of chiral cryptands based upon the 2,2 -binaphthyl unit " . In a typical preparation, the binaphthyl units are treated with bromoacetic acid to form the phenoxyacetic acid derivatives which are then converted into the corresponding diacyl chlorides (75). Reaction of 15 with l,10-diaza-18-... [Pg.354]

The reaction of ethyl a-bromoacetate with 17-keto steroids such as estrone methyl ether or dehydroepiandrosterone acetate " under standard Reformatsky conditions is stereospecific, producing the 17 -ol in up to 80% yields. Ethyl a-bromopropionate reacts similarly but the yields are somewhat lower. [Pg.139]

Both methyltriethylphosphonium fluoride and methyltributylphospho-nium fluoride have been prepared The latter generates benzyl fluoride from benzyl chloride in 80% yield and ethyl fluoroacetate from ethyl bromoacetate in 53% yield Methyltnbutylphosphonium fluoride converts 1-bromododecane to a 50 50 mixture of 1-fluorododecane and 1-dodecene Methyltnbutylphosphonium fluoride also quantitatively forms styrene from 1-bromo-1-phenylethane [26] Methyl-tnbutylphosphonium fluonde is the reagent of choice for the conversion of N,N dimethylchloroacetamide to its fluoride, but it is not able to convert chloro-acetonitnle to fluoroacetomtrile Methyltnbutylphosphonium fluoride changes chloromethyl octyl ether to the crude fluoromethyl ether in 66% yield The stereoselectivity of methyltnbutylphosphonium fluoride is illustrated by the reac tions of the 2-tert-butyl-3-chlorooxiranes [27] (Table 2)... [Pg.179]

Reduction of the quaternary immonium salt 161, obtained by treatment of l-methyl-2-ethylidenepyrrolidine with ethyl bromoacetate, by means of either sodium borohydride or formic acid, leads to (—)-erythro-2-(2-N-methylpyrrolidyl)butyric acid (162), in agreement with Cram s rule (196). [Pg.289]

A treatment of 2-butyltelluroaniline with an equimolar amount of bromoacetic acid results in spontaneous cyclization of the formed telluronium salt 31 to give 1-butylbenzotellurazinonium bromide 30. That the alkylation occurs at the tellurium and not at the nitrogen atom of 2-butyltelluroaniline has been proved by the isolation of the methyl ester of 31 in 60% yield when the amine was coupled with methyl bromoacetate under the same reaction conditions. Elimination of butyl bromide from 30 readily occurs on heating of its DMF solution leading to 2//-l,4-benzotellurazin-3(4//)-one 32 in 90% yield. [Pg.15]

When bromoacetyl chloride is used instead of bromoacetic acid, the anilide 33 is formed at the first stage. Its subsequent cyclization also leads to 32. This approach to benzotellurazinone is similar to that developed for the synthesis of 2//-l,4-benzothiazin-3(4//)-ones (66CJC1247). Significantly, attempts to isolate the intermediate sulfonium salts analogous to 30 were unsuccessful. [Pg.15]

Quaternization of harman (235) with ethyl bromoacetate, followed by cyclization of the pyridinium salt 236 with 1,2-cyclohexane-dione in refluxing ethanol yielded an ester which on hydrolysis gave the pseudo-cross-conjugated mesomeric betaine 237. Decarboxylation resulted in the formation of the alkaloid Sempervirine (238). The PCCMB 237 is isoconjugate with the 11/7-benzo[u]fluorene anion—an odd nonalternant hydrocarbon anion—and belongs to class 14 of heterocyclic mesomeric betaines (Scheme 78). [Pg.135]

The ring-contracted analog of alphaprodine is prepared by a variation of the scheme above. Alkylation of 109 with ethyl bromoacetate affords the lower homolog diester (115). Dieckmann cyclization followed by saponification-decarboxylation yields the pyrrolidine (116). Reaction with phenylmagnesium bromide leads to the condensation product (117) acylation with propionic anhydride gives the analgesic agent prolidine (118)... [Pg.305]

The first step in the sequence may involve Friedel-Crafts-type condensation of resorcinol with the enolate of 10 to afford the unsaturated ester, 11. Alkylation of the free phenol on 12 by means of ethyl bromoacetate affords chromonar (13). ... [Pg.331]


See other pages where To-Bromoacetates is mentioned: [Pg.377]    [Pg.55]    [Pg.558]    [Pg.88]    [Pg.687]    [Pg.1807]    [Pg.225]    [Pg.558]    [Pg.398]    [Pg.594]    [Pg.377]    [Pg.55]    [Pg.558]    [Pg.88]    [Pg.687]    [Pg.1807]    [Pg.225]    [Pg.558]    [Pg.398]    [Pg.594]    [Pg.430]    [Pg.875]    [Pg.172]    [Pg.294]    [Pg.90]    [Pg.90]    [Pg.319]    [Pg.161]    [Pg.33]    [Pg.418]    [Pg.139]    [Pg.5]    [Pg.54]    [Pg.120]    [Pg.120]   
See also in sourсe #XX -- [ Pg.352 ]




SEARCH



Bromoacetals

Bromoacetals to Carboxylic Acid Esters

Bromoacetate

Bromoacetates

© 2024 chempedia.info