Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium, corrosion resistance

Titanium corrosion-resistent special apparatus (nitric acid, hot lower carboxylic acids)... [Pg.226]

Titanium, when pure, is a lustrous, white metal. It has a low density, good strength, is easily fabricated, and has excellent corrosion resistance. It is ductile only when it is free of oxygen. The metal, which burns in air, is the only element that burns in nitrogen. [Pg.75]

If the ECM of titanium is attempted in sodium chloride electrolyte, very low (10—20%) current efficiency is usually obtained. When this solution is replaced by some mixture of fluoride-based electrolytes, to achieve greater efficiencies (> 60%), a higher voltage (ca 60 V) is used. These conditions ate needed to break down the tenacious oxide film that forms on the surface of titanium. It is this film which accounts for the corrosion resistance of titanium, and together with its toughness and lightness, make this metal so useful in the aircraft engine industry. [Pg.308]

Chemical-Process Vessels. Explosion-bonded products are used in the manufacture of process equipment for the chemical, petrochemical, and petroleum industries where the corrosion resistance of an expensive metal is combined with the strength and economy of another metal. AppHcations include explosion cladding of titanium tubesheet to Monel, hot fabrication of an explosion clad to form an elbow for pipes in nuclear power plants, and explosion cladding titanium and steel for use in a vessel intended for terephthaHc acid manufacture. [Pg.150]

Titanium is resistant to nitric acid from 65 to 90 wt % and ddute acid below 10 wt %. It is subject to stress—corrosion cracking for concentrations above 90 wt % and, because of the potential for a pyrophoric reaction, is not used in red filming acid service. Tantalum exhibits good corrosion resistance to nitric acid over a wide range of concentrations and temperatures. It is expensive and typically not used in conditions where other materials provide acceptable service. Tantalum is most commonly used in appHcations where the nitric acid is close to or above its normal boiling point. [Pg.45]

Titanium alloy systems have been extensively studied. A single company evaluated over 3000 compositions in eight years (Rem-Cm sponsored work at BatteUe Memorial Institute). AHoy development has been aimed at elevated-temperature aerospace appHcations, strength for stmctural appHcations, biocompatibiHty, and corrosion resistance. The original effort has been in aerospace appHcations to replace nickel- and cobalt-base alloys in the 250—600°C range. The useful strength and corrosion-resistance temperature limit is ca 550°C. [Pg.100]

The heat-transfer quaUties of titanium are characterized by the coefficient of thermal conductivity. Even though the coefficient is low, heat transfer in service approaches that of admiralty brass (thermal conductivity seven times greater) because titanium s greater strength permits thinner-walled equipment, relative absence of corrosion scale, erosion—corrosion resistance that allows higher operating velocities, and the inherently passive film. [Pg.102]

Corrosion Resistance. Titanium is immune to corrosion in all naturally occurring environments. It does not corrode in air, even if polluted or moist with ocean spray. It does not corrode in soil and even the deep salt-mine-type environments where nuclear waste might be buried. It does not corrode in any naturally occurring water and most industrial wastewater streams. For these reasons, titanium has been termed the metal for the earth, and 20—30% of consumption is used in corrosion-resistance appHcations (see Corrosion and corrosion inhibitors). [Pg.102]

The titanium oxide film consists of mtile or anatase (31) and is typically 250-A thick. It is insoluble, repairable, and nonporous in many chemical media and provides excellent corrosion resistance. The oxide is fully stable in aqueous environments over a range of pH, from highly oxidizing to mildly reducing. However, when this oxide film is broken, the corrosion rate is very rapid. Usually the presence of a small amount of water is sufficient to repair the damaged oxide film. In a seawater solution, this film is maintained in the passive region from ca 0.2 to 10 V versus the saturated calomel electrode (32,33). [Pg.102]

In energy extraction, titanium alloys are being used in deep-water hydrocarbon and geothermal weUs for risers. Corrosion resistance, high strength, low modulus (flexible), and low density can result in risers one-fourth the weight and three times the flexibiHty of steel. [Pg.110]

Stainless Steel There are more than 70 standard types of stainless steel and many special alloys. These steels are produced in the wrought form (AISI types) and as cast alloys [Alloy Casting Institute (ACI) types]. Gener y, all are iron-based, with 12 to 30 percent chromium, 0 to 22 percent nickel, and minor amounts of carbon, niobium (columbium), copper, molybdenum, selenium, tantalum, and titanium. These alloys are veiy popular in the process industries. They are heat- and corrosion-resistant, noncontaminating, and easily fabricated into complex shapes. [Pg.2443]

Metals that depend on a relatively thick protective coating of corrosion product for corrosion resistance are frequently subject to erosion-corrosion. This is due to the poor adherence of these coatings relative to the thin films formed by the classical passive metals, such as stainless steel and titanium. Both stainless steel and titanium are relatively immune to erosion-corrosion in most cooling water environments. [Pg.240]

Materials that are corrosion resistant to the expected cathodic polarization qualify as impressed current cathodes. Austenitic CrNi steels are used with strong acids. The oleum (i.e., fuming sulfuric acid) and concentrated sulfuric acid tanks used in sulfonating alkanes and in the neutralization of sulfonic acids are anodi-cally protected using platinized brass as cathodes [15]. Lead cathodes are used to protect titanium heat exchangers in rayon spinning baths [16]. [Pg.477]

For resistance against fatigue, Nimonic 75 has been used with Nimonic 80 and Nimonic 90. Nimonic 75 is an 80-20 nickel-chromium alloy stiffened with a small amount of titanium carbide. Nimonic 75 has excellent oxidation and corrosion resistance at elevated temperatures, a reasonable creep strength, and good fatigue resistance. In addition, it is easy to press, draw, and mold. As firing temperatures have increased in the newer gas turbine models, HA-188, a Cr, Ni-based alloy, has recently been employed in the latter section of some combustion liners for improved creep rupture strength. [Pg.384]


See other pages where Titanium, corrosion resistance is mentioned: [Pg.447]    [Pg.447]    [Pg.109]    [Pg.347]    [Pg.347]    [Pg.140]    [Pg.149]    [Pg.397]    [Pg.119]    [Pg.133]    [Pg.191]    [Pg.5]    [Pg.7]    [Pg.7]    [Pg.26]    [Pg.26]    [Pg.242]    [Pg.278]    [Pg.40]    [Pg.365]    [Pg.102]    [Pg.107]    [Pg.108]    [Pg.110]    [Pg.116]    [Pg.433]    [Pg.471]    [Pg.283]    [Pg.481]    [Pg.74]    [Pg.76]    [Pg.974]    [Pg.2448]    [Pg.2451]    [Pg.11]    [Pg.11]    [Pg.101]   
See also in sourсe #XX -- [ Pg.5 , Pg.38 , Pg.238 ]

See also in sourсe #XX -- [ Pg.344 , Pg.345 , Pg.346 ]

See also in sourсe #XX -- [ Pg.344 , Pg.345 , Pg.346 ]

See also in sourсe #XX -- [ Pg.5 , Pg.38 , Pg.238 ]

See also in sourсe #XX -- [ Pg.313 ]




SEARCH



Corrosion resistance

Titanium corrosion

Titanium resistance

© 2024 chempedia.info