Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium epoxidation catalysts

Hou reported the use of a chiral (salen)titanium catalyst for the desymmetriza-tion of meso-epoxides with thiols (Scheme 7.14). The complex, fonned in situ... [Pg.236]

The proposed dinuclear transition-state model (1) has been supported by the observation of nonlinear relationship between enantiomeric excess (ee) of the epoxide and ee of DAT.33 The use of simple diol instead of tartrate vitiates stereoselectivity of the reaction.34,35 The ester group of DAT is indispensable for the construction of the desired catalyst. It is noteworthy that 1,2-di(o-methoxy-phenyl)ethylenediol is an efficient chiral auxiliary for titanium-mediated epoxidation, while 1,2-diphenylethylenediol is a poor one.36... [Pg.209]

Annual Volume 71 contains 30 checked and edited experimental procedures that illustrate important new synthetic methods or describe the preparation of particularly useful chemicals. This compilation begins with procedures exemplifying three important methods for preparing enantiomerically pure substances by asymmetric catalysis. The preparation of (R)-(-)-METHYL 3-HYDROXYBUTANOATE details the convenient preparation of a BINAP-ruthenium catalyst that is broadly useful for the asymmetric reduction of p-ketoesters. Catalysis of the carbonyl ene reaction by a chiral Lewis acid, in this case a binapthol-derived titanium catalyst, is illustrated in the preparation of METHYL (2R)-2-HYDROXY-4-PHENYL-4-PENTENOATE. The enantiomerically pure diamines, (1 R,2R)-(+)- AND (1S,2S)-(-)-1,2-DIPHENYL-1,2-ETHYLENEDIAMINE, are useful for a variety of asymmetric transformations hydrogenations, Michael additions, osmylations, epoxidations, allylations, aldol condensations and Diels-Alder reactions. Promotion of the Diels-Alder reaction with a diaminoalane derived from the (S,S)-diamine is demonstrated in the synthesis of (1S,endo)-3-(BICYCLO[2.2.1]HEPT-5-EN-2-YLCARBONYL)-2-OXAZOLIDINONE. [Pg.266]

A number of additional metal-catalyzed epoxidations have been reported in the past year. Platinum is a rarely used catalyst in oxidation reactions. The use of chiral Pt-catalyst 2 in the epoxidation of terminal alkenes provides the epoxide products in moderate yield and enantiomeric excess <06JA14006>. The chiral hydroxamide 3 is used with a Mo catalyst to provide the epoxide product in excellent yields and moderate enantioselectivity <06AG(I)5849>. A bis-titanium catalyst, 4, has also been used to epoxidize the usual set of alkenes with H202 as the oxidant <06AG(I)3478>. [Pg.71]

A conveniently prepared amorphous silica-supported titanium catalyst exhibits activity similar to that of Ti-substituted zeolites in the epoxidation of terminal linear and bulky alkenes such as cyclohexene (22) <00CC855>. An unusual example of copper-catalyzed epoxidation has also been reported, in which olefins are treated with substoichiometric amounts of soluble Cu(II) compounds in methylene chloride, using MCPBA as a terminal oxidant. Yields are variable, but can be quite high. For example, cis-stilbene 24 was epoxidized in 90% yield. In this case, a mixture of cis- and /rans-epoxides was obtained, suggesting a step-wise radical mechanism <00TL1013>. [Pg.55]

Titanium catalysts have long been used in electron transfer reactions involving epoxides, mostly as stoichiometric reagents. Gansauer et al. have developed a catalytic version of these reactions using titanocenes along with zinc metal to generate the active catalyst (Scheme 60). In situ reduction of Ti(IV) with zinc metal provides Ti(III) species 231, which coordinates... [Pg.165]

The ability of titanium-grafted silicas in catalyzing the epoxidation with TBHP of fatty compounds was first tested on two pure Qg monounsaturated FAMEs methyl oleate (ds-9-octadecenoate Scheme 12.1) and methyl elaidate (trans-9-octadecenoate) [49]. In both cases, selectivity to 9,10-epoxystearate was very high (>95%) and the reaction was fully stereospecific, confirming that epoxidation with titanium catalysts and TBHP proceeds via a non-radical mechanism with retention of configuration at the C=C bond. Ti-MCM-41 was more active than Ti-SiC>2 (Fig. 12.1). Actually, methyl oleate was almost completely converted after... [Pg.265]

Alkoxides and imido are used as anionic ligands in zirconium and titanium catalysts for the polymerisation of alkenes, sometimes as the only anions, but often in combination with cyclopentadienyl ligands. Imides linked to cyclopentadienyl groups form part of the single-site catalyst developed by Dow (Chapter 10) (Figure 1.9, 1). In very different titanium catalysts, namely those used for epoxidation of alkenes, also alkoxide ligands are used (Chapter 14). [Pg.21]

Among the large bulk of work regarding titanium(IV) silsesquioxanes, specific studies have been focused on synthesizing close molecular models of the active sites of titanium heterogeneous epoxidation catalysts in siUcaUte and in mesostruc-tured MCM-41 silica (Figure 14.3 gives some selected examples) [54, 61-66]. [Pg.562]

Transition metals and their complexes can be immobilized in the mesopores or incorporated in the structure to make silica-supported metal catalysts. For instance, titanium catalysts for selective oxidation can be formed by modifying the mesoporous structure with either Ti grafted on the surface (Tif MCM-41) or Ti substituted into the framework (Ti->MCM-41). The grafted version makes the better catalyst for the epoxidation of alkenes using peroxides, and has good resistance to leaching of the metal. [Pg.333]

The original titanium catalyst invented by Sharpless and Katsuki has been used for the epoxidation of an immense number of allylic alcohols to yield high value industrial synthons very effectively, as shown in Figure 1.45. ... [Pg.23]

Asymmetric epoxidation of ailylic alcohols.1 Epoxidation of allylic alcohols with r-bulyl hydroperoxide in the presence of titanium(lV) isopropoxide as the metal catalyst and either diethyl D- or diethyl L-tartrate as the chiral ligand proceeds in > 90% stereoselectivity, which is independent of the substitution pattern of the allylic alcohol but dependent on the chirality of the tartrate. Suggested standard conditions are 2 equivalents of anhydrous r-butyl hydroperoxide with 1 equivalent each of the alcohol, the tartrate, and the titanium catalyst. Lesser amounts of the last two components can be used for epoxidation of reactive allylic alcohols, but it is important to use equivalent amounts of these two components. Chemical yields are in the range of 70-85%. [Pg.64]

Epoxidation of both syn- and awft -5-(tosylamino)-hex-3-en-2-ol derivatives 219 with t-butyl hydroperoxide with vanadium or titanium catalysts has been shown to exhibit little stereocontrol (< 3 1 )345. [Pg.1181]

The epoxidation of electron-deficient alkenes with either vanadium or titanium catalysts give syw-epoxides347 a free hydroxy group and a ketone or ester function are necessary for the reaction to take place, and a modest level of asymmetric induction can be achieved with y-hydroxy enone substrates and chiral titanium catalysts348. [Pg.1181]

Cyclic voltammetry, kinetic studies, and DFT calculations using a BP functional and the TZVP basis set showed that the major pathway of the non-regiospeciflc zinc-reduced titanocene-mediated ring opening of epoxides was initiated by a titanium dimer-epoxide compound that reacted in a rate-determining electron transfer mechanism 25 The calculations showed that the transition state is early so the stereoselectivity is determined by steric effects rather than by the stability of intermediate radicals. This was confirmed by studies with more sterically crowded catalysts. [Pg.237]

Exploration of the Synthesis of Silsesquioxane Precursors for Epoxidation Titanium Catalysts I 213... [Pg.213]

The epoxidation activity of the titanium catalysts, as a function of the different solvents and R groups varied in the synthesis of the silsesquioxanes precursors, is reported in Fig. 9.2. Values are normalised to the activity of the complex obtained by reacting TifOPr1 with the pure cyclopentyl silsesquioxane 7fc3 in THF. The results show some general trends ... [Pg.215]

The highest catalytic activities were found for the titanium complexes obtained from tert-butyl silsesquioxanes synthesised in DM SO and water, with respectively 84% and 74% of the activity of the reference catalyst (c-C5H9)7Si7012Ti0C4H9. [With the experimental conditions employed, (c-C5H9)7Si7012Ti0C4H9 gives complete and selective conversion of TBHP towards the epoxide therefore, the relative activities of the reported catalysts correspond to their TBHP conversions towards 1,2-epoxyoctane.] These two catalysts exhibited almost the same activity as the previous best HTE catalyst (87%) obtained from cyclopentyl silsesquioxanes synthesised in acetonitrile [39, 44, 46] and are the first reported examples of tert-butyl silsesquioxanes as precursors for very active titanium catalysts. Relevant catalytic activities were also obtained with cyclohexyl silsesquioxanes synthesised in DM SO (67%) and with phenyl silsesquioxanes synthesised in H20 (61%). [Pg.219]

Finally, all the methyl and ethyl silsesquioxanes are poor precursor for titanium-based epoxidation catalysts, in agreement with the initial experiments [39, 44]. [Pg.220]

Besides the intrinsic value of the identification of a new, selective and high yield method to synthesise silsesquioxane Bu2Si20(0H)4, this experiment proved that tert-butyl silsesquioxane a2bA is a suitable precursor for titanium catalysts. Thus, silsesquioxane structures different from the known precursor silsesquioxane alb i [R7Si709(0H)3] [25, 26, 28] can effectively coordinate titanium centres to yield almost equally active epoxidation catalysts. [Pg.231]


See other pages where Titanium epoxidation catalysts is mentioned: [Pg.192]    [Pg.666]    [Pg.192]    [Pg.390]    [Pg.159]    [Pg.436]    [Pg.391]    [Pg.411]    [Pg.417]    [Pg.391]    [Pg.411]    [Pg.417]    [Pg.167]    [Pg.28]    [Pg.29]    [Pg.221]   


SEARCH



Catalysts epoxidation

Catalysts titanium

Epoxides catalyst

Heterogeneous epoxidation titanium catalyst

Sharpless asymmetric epoxidation titanium catalysts

Titanium catalysts asymmetric epoxidation

Titanium catalysts, epoxidation olefins

Titanium complexes (Sharpless Ti tartrate asymmetric epoxidation catalyst)

Titanium epoxidation catalysts supported Sharpless

© 2024 chempedia.info