Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Time-dependent theory and linear response

Time-dependent theory and linear response 6.4.2 Exact linear response theory... [Pg.84]

S. Comi, R. Cammi, B. Mennucci, J. Tomasi, Electronic excitation energies of molecules in solution within continuum solvation models Investigating the discrepancy between state-specific and linear-response methods, Formation and relaxation of excited states in solution A new time dependent polarizable continuum model based on time dependent density functional theory. J. Chem. Phys. 123, 134512 (2005)... [Pg.35]

V-clcctron state T, correlation energy can be defined for any stationary state by Ec = E — / o, where Eo = ( //1) and E = ( // 4 ). Conventional normalization ) = ( ) = 1 is assumed. A formally exact functional Fc[4>] exists for stationary states, for which a mapping — F is established by the Schrodinger equation [292], Because both and p are defined by the occupied orbital functions occupation numbers nt, /i 4>, E[p and E[ (p, ] are equivalent functionals. Since E0 is an explicit orbital functional, any approximation to Ec as an orbital functional defines a TOFT theory. Because a formally exact functional Ec exists for stationary states, linear response of such a state can also be described by a formally exact TOFT theory. In nonperturbative time-dependent theory, total energy is defined only as a mean value E(t), which lies outside the range of definition of the exact orbital functional Ec [ ] for stationary states. Although this may preclude a formally exact TOFT theory, the formalism remains valid for any model based on an approximate functional Ec. [Pg.83]

When extended to include electronic correlation, for which an exact but implicit orbital functional was derived above, the TDHF formalism becomes a formally exact theory of linear response. In practice, some simplified orbital functional Ec[ 4>i ] must be used, and the accuracy of results is limited by this choice. The Hartree-Fock operator Ti is replaced by G = Ti + vc. Dirac defines an idempo-tent density operator p whose kernel is JA i(r) i (r/)- The Did. equations are equivalent to [0, p] = 0. The corresponding time-dependent equations are itijtP = [Q(t), p(t)]. Dirac proved, for Hermitian G, (hat the time-dependent equation ih i(rt) implies that p(l) is idempotent. Hence pit) corresponds to a normalized time-dependent reference state. [Pg.84]

Time-dependent density functional theory (TDDFT) as a complete formalism [7] is a more recent development, although the historical roots date back to the time-dependent Thomas-Fermi model proposed by Bloch [8] as early as 1933. The first and rather successful steps towards a time-dependent Kohn-Sham (TDKS) scheme were taken by Peuckert [9] and by Zangwill and Soven [10]. These authors treated the linear density response of rare-gas atoms to a time-dependent external potential as the response of non-interacting electrons to an effective time-dependent potential. In analogy to stationary KS theory, this effective potential was assumed to contain an exchange-correlation (xc) part, r,c(r, t), in addition to the time-dependent external and Hartree terms ... [Pg.83]

In liquids and dense gases where collisions, intramolecular molecular motions and energy relaxation occur on the picosecond timescales, spectroscopic lineshape studies in the frequency domain were for a long time the principle source of dynamical information on the equilibrium state of manybody systems. These interpretations were based on the scattering of incident radiation as a consequence of molecular motion such as vibration, rotation and translation. Spectroscopic lineshape analyses were intepreted through arguments based on the fluctuation-dissipation theorem and linear response theory (9,10). In generating details of the dynamics of molecules, this approach relies on FT techniques, but the statistical physics depends on the fact that the radiation probe is only weakly coupled to the system. If the pertubation does not disturb the system from its equilibrium properties, then linear response theory allows one to evaluate the response in terms of the time correlation functions (TCF) of the equilibrium state. Since each spectroscopic technique probes the expectation value... [Pg.346]

The discussion of electric and magnetic properties of molecules retains its importance, especially with the growth of new and sensitive experimental techniques in spectroscopy and magnetic resonance. Chapter 11, on static properties, is a rewritten and expanded version of the corresponding chapter in the first edition and covers effects due to the presence of small (relativistic) terms in the Hamiltonian and to the application of external fields. Nowadays, however, dynamic effects are also of growing importance, and a new Chapter 12 is devoted to time-dependent perturbations and the general theory of linear response. [Pg.581]

Petersilka, M., Gossmann, U. J., Gross, E. K. U., 1998, Time Dependent Optimized Effective Potential in the Linear Response Regime in Electronic Density Functional Theory. Recent Progress and New Directions, Dobson, J. F., Vignale, G., Das, M. P. (eds.), Plenum Press, New York. [Pg.298]

The actual form of the Hamiltonian operator hp does not have to be defined at this moment. As in standard perturbation theory, it is assumed that the solution of the electronic structure problem of the combined Hamiltonian HKS +HP can be described as the solution y/(0) of HKS, corrected by a small additional linear-response wavefunction /b//(,). Only these response orbitals will explicitly depend on time - they will follow the oscillations of the external perturbation and adopt its time dependency. Thus, the following Ansatz is made for the solution of the perturbed Hamiltonian HKS +HP ... [Pg.34]

The study of behavior of many-electron systems such as atoms, molecules, and solids under the action of time-dependent (TD) external fields, which includes interaction with radiation, has been an important area of research. In the linear response regime, where one considers the external held to cause a small perturbation to the initial ground state of the system, one can obtain many important physical quantities such as polarizabilities, dielectric functions, excitation energies, photoabsorption spectra, van der Waals coefficients, etc. In many situations, for example, in the case of interaction of many-electron systems with strong laser held, however, it is necessary to go beyond linear response for investigation of the properties. Since a full theoretical description based on accurate solution of TD Schrodinger equation is not yet within the reach of computational capabilities, new methods which can efficiently handle the TD many-electron correlations need to be explored, and time-dependent density functional theory (TDDFT) is one such valuable approach. [Pg.71]

Figure 5 Typical velocity relationship of kinetic friction for a sliding contact in which friction is from adsorbed layers confined between two incommensurate walls. The kinetic friction F is normalized by the static friction Fs. At extremely small velocities v, the confined layer is close to thermal equilibrium and, consequently, F is linear in v, as to be expected from linear response theory. In an intermediate velocity regime, the velocity dependence of F is logarithmic. Instabilities or pops of the atoms can be thermally activated. At large velocities, the surface moves too quickly for thermal effects to play a role. Time-temperature superposition could be applied. All data were scaled to one reference temperature. Reprinted with permission from Ref. 25. [Pg.77]

The last method used in this study is CCSD linear response theory [37]. The frequency-dependent polarizabilities are again identified from the time evolution of the corresponding moments. However, in CCSD response theory the moments are calculated as transition expectation values between the coupled cluster state l cc(O) and a dual state... [Pg.190]

We denote the fluctuations of the number density of the monomers of component j at a point r and at a time t as pj r,t). With this definition we have pj(r,t))=0. In linear response theory, the Fourier-Laplace transform of the time-dependent mean density response to an external time dependent potential U r,t) is expressed as ... [Pg.163]

Static charge-density susceptibilities have been computed ab initio by Li et al (38). The frequency-dependent susceptibility x(r, r cd) can be calculated within density functional theory, using methods developed by Ando (39 Zang-will and Soven (40 Gross and Kohn (4I and van Gisbergen, Snijders, and Baerends (42). In ab initio work, x(r, r co) can be determined by use of time-dependent perturbation techniques, pseudo-state methods (43-49), quantum Monte Carlo calculations (50-52), or by explicit construction of the linear response function in coupled cluster theory (53). Then the imaginary-frequency susceptibility can be obtained by analytic continuation from the susceptibility at real frequencies, or by a direct replacement co ico, where possible (for example, in pseudo-state expressions). [Pg.172]

The mechanical response of polypropylene foam was studied over a wide range of strain rates and the linear and non-linear viscoelastic behaviour was analysed. The material was tested in creep and dynamic mechanical experiments and a correlation between strain rate effects and viscoelastic properties of the foam was obtained using viscoelasticity theory and separating strain and time effects. A scheme for the prediction of the stress-strain curve at any strain rate was developed in which a strain rate-dependent scaling factor was introduced. An energy absorption diagram was constructed. 14 refs. [Pg.46]

The time-dependent density functional theory [38] for electronic systems is usually implemented at adiabatic local density approximation (ALDA) when density and single-particle potential are supposed to vary slowly both in time and space. Last years, the current-dependent Kohn-Sham functionals with a current density as a basic variable were introduced to treat the collective motion beyond ALDA (see e.g. [13]). These functionals are robust for a time-dependent linear response problem where the ordinary density functionals become strongly nonlocal. The theory is reformulated in terms of a vector potential for exchange and correlations, depending on the induced current density. So, T-odd variables appear in electronic functionals as well. [Pg.144]

Linear response theory is reviewed in Section II in order to establish contact between experiment and time-correlation functions. In Section III the memory function equation is derived and applied in Section IV to the calculation of time-correlation functions. Section V shows how time-correlation functions can be used to guess time-dependent distribution functions and similar methods are then applied in Section VI to the determination of time-correlation functions. In Section VII a succinct review is given of other exact and experimental calculations of time-correlation functions. [Pg.9]


See other pages where Time-dependent theory and linear response is mentioned: [Pg.77]    [Pg.78]    [Pg.80]    [Pg.82]    [Pg.86]    [Pg.88]    [Pg.90]    [Pg.245]    [Pg.77]    [Pg.78]    [Pg.80]    [Pg.82]    [Pg.86]    [Pg.88]    [Pg.90]    [Pg.245]    [Pg.298]    [Pg.570]    [Pg.154]    [Pg.549]    [Pg.3]    [Pg.166]    [Pg.718]    [Pg.855]    [Pg.936]    [Pg.227]    [Pg.315]    [Pg.80]    [Pg.193]    [Pg.230]    [Pg.207]    [Pg.366]    [Pg.541]    [Pg.351]    [Pg.155]    [Pg.475]    [Pg.207]    [Pg.154]    [Pg.207]    [Pg.247]    [Pg.270]   


SEARCH



Linear response

Linear response theory

Linear response time-dependent

Linear theory

Linearized theory

Linearly dependent

Response theories

Time response

Time-dependent linear response theory

Time-dependent responses

Time-dependent theories

© 2024 chempedia.info