Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thionyl chloride activator

An example of thionyl chloride-activated polyesterification is detailed in Section 2.4.4.I.3. [Pg.81]

Terephthalic Acid—Isophthalic Acid-Bisphenol-A Reaction Using Thionyl Chloride Activation... [Pg.111]

Chlorosulfonic acid-aluminium oxide was active as a heterogeneous catalyst in promoting the isomerization of tricyclic naphthenes to adamantmes. This mixture was one of six catalysts examined to determine their activity in facilitating the gas-phase isomerization of perhydroacenaphthene to alkyladamantanes, the most active catalyst was a mixture of thionyl chloride-activated platinum-aluminium oxide. ... [Pg.266]

The reserve configuration eliminates most safety concerns associated with lithium-thionyl chloride active batteries. [Pg.669]

The carbonyiation of o-diiodobenzene with a primary amine affords the phthalimide 501 [355,356]. Carbonyiation of iodobenzene in the presence of (9-diaminobenzene (502) and DBU or 2,6-lutidine affords 2-phenylbenzimida-zole (503)[357, The carbonyiation of aryl iodides in the presence of pentaflnor-oaniline affords 2-arylbenzoxazoles directly, 2-Arylbenzoxazole is prepared indirectly by the carbonyiation of (9-aminophenol[358j. The optically active aryl or alkenyl oxazolinc 505 is prepared by the carbonyiation of the aryl or enol triflates in the presence of the opticaly active amino alcohol 504, followed by treatment with thionyl chloride[359]. [Pg.197]

Acid Chloride Formation. Monoacid chlorides of maleic and fumaric acid are not known. Treatment of maleic anhydride or maleic acid with various reagents such as phosgene [75-44-5] (qv), phthaloyl chloride [88-95-9] phosphoms pentachloride [10026-13-8] or thionyl chloride [7719-09-7] gives 5,5-dichloro-2(5JT)furanone [133565-92-1] (4) (26). Similar conditions convert fumaric acid to fumaryl chloride [627-63-4] (5) (26,27). NoncycHc maleyl chloride [22542-53-6] (6) forms in 11% yield at 220°C in the reaction of one mole of maleic anhydride with six moles of carbon tetrachloride [56-23-5] over an activated carbon [7440-44-4] catalyst (28). [Pg.449]

At present, thionyl chloride is produced commercially by the continuous reaction of sulfur dioxide (or sulfur trioxide) with sulfur monochloride (or sulfur dichloride) mixed with excess chlorine. The reaction is conducted in the gaseous phase at elevated temperature over activated carbon (178). Unreacted sulfur dioxide is mixed with the stoichiometric amount of chlorine and allowed to react at low temperature over activated carbon to form sulfuryl chloride, which is fed back to the main thionyl chloride reactor. [Pg.141]

Qindamycin, 7(5)-7-chloro-7-deoxyliQcomycin [18323-44-9] (1, R = H, R = Q), also known as Cleocin, first resulted from the reaction of lincomycin and thionyl chloride (54) improved synthetic methods involve the reaction of lincomycin and triphenylphosphine dichloride or triphenylphosphine in carbon tetrachloride (55). Clindamycin is significantly more active than lincomycin against gram-positive bacteria in vitro, and is absorbed rapidly following oral adnainistration. Clindamycin 2-palmitate [36688-78-5], (6, R = R = OC(CH2) 4CH2), 2-palmitate ester of clindamycin, is... [Pg.89]

Activated compounds such as 5-nitropyrimidin-2-one and 1-methyl-5-nitro-2-pyridone form the 2-chloro analogs with thionyl chloride 223b. 312b displacement of the —O—SO—Cl group. In reactions... [Pg.210]

Conversion of m-bromobenzonitrile to the tetrazole and addition of the elements of acrylic acid gives 7S, starting material for the patented synthesis of the antiinflammatory agent, bropera-mole (76). The synthesis concludes by activation with thionyl chloride and a Schotten-Baumann condensation with piperidine. [Pg.139]

It was quite recently reported that La can be electrodeposited from chloroaluminate ionic liquids [25]. Whereas only AlLa alloys can be obtained from the pure liquid, the addition of excess LiCl and small quantities of thionyl chloride (SOCI2) to a LaCl3-sat-urated melt allows the deposition of elemental La, but the electrodissolution seems to be somewhat Idnetically hindered. This result could perhaps be interesting for coating purposes, as elemental La can normally only be deposited in high-temperature molten salts, which require much more difficult experimental or technical conditions. Furthermore, La and Ce electrodeposition would be important, as their oxides have interesting catalytic activity as, for instance, oxidation catalysts. A controlled deposition of thin metal layers followed by selective oxidation could perhaps produce cat-alytically active thin layers interesting for fuel cells or waste gas treatment. [Pg.300]

The Li-SOCl2 battery consists of a lithium-metal foil anode, a porous carbon cathode, a porous non-woven glass or polymeric separator between them, and an electrolyte containing thionyl chloride and a soluble salt, usually lithium tetrachloro-aluminate. Thionyl chloride serves as both the cathode active material and the elec-... [Pg.40]

Thionyl chloride is another activating agent employed for reactions between aromatic carboxylic acids and phenols in pyridine solution. The mechanism suggested does not involve the formation of an acid chloride but assumes the existence of an intermediary mixed sulfinic anhydride which undergoes reaction with phenolic endgroups (Scheme 2.32).311... [Pg.80]

Thermoplastic resins, self-reinforced, 26 Thermoplastics, preparation of, 257-258 Thermoplastic step-growth polymers, 3 Thermosetting polyester resins, 29-31 Thermosetting resins, 3-4, 19 Thermotropic compounds, 49 THF. See Tetrahydrofuran (THF) Thiobisphenol S (TBPS), 364 Thionyl chloride, 80 activation of, 111 3,3 -linked polymers, 480 Tin-amine coordination complex, 234 Tin compounds, 86, 232-233... [Pg.603]

Once again, one reaction and only one must be an inversion, but which7" It may also be noticed [illustrated by the use of thionyl chloride on (+)-malic acid and treatment of the product with KOH] that it is possible to convert an optically active compound into its enantiomer." ... [Pg.391]

In batteries of this type, solntions of lithium salts in thionyl chloride, SOCI2, are nsed as the electrolyte. Exceptionally, this strongly oxidizing solvent also serves as the active material for the cathodic reaction. Thus, during discharge thionyl chloride is electrochemicaUy reduced at a cathode made of carbon materials ... [Pg.357]

Apart from the work toward practical lithium batteries, two new areas of theoretical electrochemistry research were initiated in this context. The first is the mechanism of passivation of highly active metals (such as lithium) in solutions involving organic solvents and strong inorganic oxidizers (such as thionyl chloride). The creation of lithium power sources has only been possible because of the specific character of lithium passivation. The second area is the thermodynamics, mechanism, and kinetics of electrochemical incorporation (intercalation and deintercalation) of various ions into matrix structures of various solid compounds. In most lithium power sources, such processes occur at the positive electrode, but in some of them they occur at the negative electrode as well. [Pg.359]

Exacting control of buffer preparation and the characteristics of capillaries and coatings is now recognized as key to successful electrophoretic separations.2 Repeatability of separations requires standardized surface preparation and rinse procedures. For example, capillaries can be coated with polyacrylamide using thionyl chloride surface activation. This approach was useful in DNA analysis.3 Non-aqueous buffers can be used to permit the use of thicker capillaries and higher voltages.4... [Pg.427]

To test this hypothesis, the picolinamide 22 was prepared using in situ activated picolinic acid (Scheme 8.12). The in situ activation of picohnic acid was used because picolinyl chloride (available commercially as the HC1 salt) is relatively expensive. The coupling reaction was not straightforward, and the best results were obtained by adding 1.4equiv of thionyl chloride to a solution of 1.4equiv of picolinic acid in acetonitrile, followed by addition of triethylamine. As soon as the addition of triethylamine was complete, aniline 5 was introduced immediately because the activated picolinic acid was unstable in the presence of triethylamine. [Pg.230]

Risocaine (28) manages to retain local anesthetic activity even without having a "basic ester" moiety.10 Its synthesis follows classic lines involving esterification of p-nitrobenzoic acid with thionyl chloride followed by reaction with propanol, and then catalytic reduction to complete the scheme. [Pg.91]


See other pages where Thionyl chloride activator is mentioned: [Pg.318]    [Pg.225]    [Pg.135]    [Pg.318]    [Pg.225]    [Pg.135]    [Pg.143]    [Pg.360]    [Pg.465]    [Pg.109]    [Pg.111]    [Pg.537]    [Pg.582]    [Pg.583]    [Pg.56]    [Pg.694]    [Pg.192]    [Pg.248]    [Pg.222]    [Pg.77]    [Pg.226]    [Pg.387]    [Pg.126]    [Pg.33]    [Pg.315]    [Pg.303]    [Pg.232]    [Pg.303]    [Pg.147]    [Pg.80]   


SEARCH



Amidation activation using thionyl chloride

Thionyl

Thionyl chloride

Thionyl chloride, DMSO activator

Thionyls

© 2024 chempedia.info