Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esters basicity

Many of the reactions listed at the beginning of this section are acid catalyzed, although a number of basic catalysts are also employed. Esterifications are equilibrium reactions, and the reactions are often carried out at elevated temperatures for favorable rate and equilibrium constants and to shift the equilibrium in favor of the polymer by volatilization of the by-product molecules. An undesired feature of higher polymerization temperatures is the increased probability of side reactions such as the dehydration of the diol or the pyrolysis of the ester. Basic catalysts produce less of the undesirable side reactions. [Pg.300]

The light stability of a non-specifically UV stabilized PVC formulation is determined by its thermal stabilization. The thermal stabilizers have a sustained influence on UV stability, in particular when other compounds (e.g., phosphites) are added to the mixture. The following list of thermal stabilizers is compiled in the order of their positive influence on UV stability in PVC organotin maleates > Ba/ Cd carboxylates > basic lead phosphites > organotin mercaptides > Ca/Zn carb-oxylates > aminocrotonic acid esters > basic lead sulfates [86]. [Pg.304]

Taft showed that LEER can also be established for aHphatic systems [8]. Taft compared the hydrolysis of substituted aliphatic methyl esters under basic conditions with the corresponding add-catalyzed reactions. [Pg.182]

Clearly, the nex.t step will be to investigate the physicochemical effects, such as charge distribution and inductive and resonance effects, at the reaction center to obtain a deeper insight into the mechanisms of these biochemical reactions and the finer details of similar reactions. Here, it should be emphasized that biochemical reactions arc ruled and driven basically by the same effects as organic reactions. Figure 10.3-22 compares the Claisen condensation of acetic esters to acctoacctic esters with the analogous biochemical reaction in the human body. [Pg.561]

The Claisen condensation is initiated by deprotonation of an ester molecule by sodium ethanolate to give a carbanion that is stabilized, mostly by resonance, as an enolate. This carbanion makes a nucleophilic attack at the partially positively charged carbon atom of the e.ster group, leading to the formation of a C-C bond and the elimination ofan ethanolate ion, This Claisen condensation only proceeds in strongly basic conditions with a pH of about 14. [Pg.561]

The industrial process for preparing the reagent usually permits a little hydrolysis to occur, and the product may contain a little free calcium hydroxide or basic chloride. It cannot therefore be employed for drying acids or acidic liquids. Calcium chloride combines with alcohols, phenols, amines, amino-acids, amides, ketones, and some aldehydes and esters, and thus cannot be used with these classes of compounds. [Pg.140]

N-Benzylamides are recommended when the corresponding acid is liquid and/or water-soluble so that it cannot itself serve as a derivative. Phe benzylamides derived from the simple fatty acids or their esters are not altogether satisfactory (see Table below) those derived from most hydroxy-acids and from poly basic acids or their esters are formed in good yield and are easily purified. The esters of aromatic acids yield satisfactory derivatives but the method must compete with the equally simple process of hydrolysis and precipitation of the free acid, an obvious derivative when the acid is a solid. The procedure fails with esters of keto, sul phonic, inorganic and some halogenated aliphatic esters. [Pg.394]

The formation of ethyl acetoacetate is an example of a general reaction knowu as the acetoacetlc ester condensation in which an ester having hydrogen on the a-carbon atom condenses with a second molecule of the same ester or with another ester (which may or may not have hydrogen on the a-carbon atom) in the presence of a basic catalyst (sodium, sodium ethoxide, sodamide, sodium triphenylmethide) to form a p-keto-ester. The mechanism of the reaction may be illustrated by the condensation of ethyl acetate with another molecule of ethyl acetate by means of sodium ethoxide. ... [Pg.476]

The first step is the interaction of the basic catalyst with the ester to produce the carbanion (I) the carbanion so formed then attacks the carbonyl carbon of a second molecule of ester to produce the anion (II), which is converted to ethyl acetoacetate (II) by the ejection of an ethoxide ion. Finally (III) reacts with ethoxide ion to produce acetoacetic ester anion (IV). This and other anions are mesomeric thus (IV) may be written ... [Pg.476]

The equilibrium of the last step (3), which is not actually part of the condensation mechanism, is far to the right because of the greater basic strength of the ethoxide ion as compared to (IV), and this largely assists the forward reactions in (1) and (2). The reaction mixture contains the sodium derivative of the keto-ester, and the free ester is obtained upon acidification. [Pg.476]

Malonic ester, like acetoacetic ester (Section 111,151), when treated with an equivalent of sodium ethoxide, forms a mono-sodium derivative, which is of great value in synthetical work. The simplest formulation of the reaction is to r rd it as an attack of the basic ethoxide ion on a hydrogen atom in the CH, group the hydrogen atoms in the CHj group are activated by the presence of the two adjacent carbethoxyl groups ... [Pg.483]

The acylation of ketones with esters an example of the Clalsen condensation is generally effected with a basic reagent, such as sodium ethoxide, sodium, sodamide or sodium hy dride. Thus acetone and ethyl acetate condense in the presence of sodium ethoxide to yield acetylacetone ... [Pg.861]

This reaction involves the condensation of an aldehyde or ketone with an a-halo ester in the presence of a basic condensing agent (sodium ethoxlde, sodamide, finely divided sodium or potassium iert.-butoxide) to give a glycldio (or ap-epoxy) ester. Thus acetophenone and ethyl chloroacetate yield phenyl-methylglycidic ester (I) ... [Pg.906]

The addition of active methylene compounds (ethyl malonate, ethyl aoeto-acetate, ethyl plienylacetate, nltromethane, acrylonitrile, etc.) to the aP-double bond of a conjugated unsaturated ketone, ester or nitrile In the presence of a basic catalyst (sodium ethoxide, piperidine, diethylamiiie, etc.) is known as the Michael reaction or Michael addition. The reaction may be illustrated by the addition of ethyl malonate to ethyl fumarate in the presence of sodium ethoxide hydrolysis and decarboxylation of the addendum (ethyl propane-1 1 2 3-tetracarboxylate) yields trlcarballylic acid ... [Pg.912]

Less basic malonic ester anions may be employed for the twofold alkylation of dibro-... [Pg.23]

Glycosidic thiol groups can be introduced into glycosyl bromides by successive reactions with thiourea and aqueous sodium disulfite (D. Horton, 1963 M. Cemy, 1961, 1963). Such thiols are excellent nucleophiles in weakly basic media and add to electrophilic double bonds, e.g., of maleic esters, to give Michael adducts in high yields. Several chiral amphiphiles have thus been prepared without any need for chromatography (J.-H. Fuhrhop, 1986 A). [Pg.269]

The easier elimination of pyridine compared to quinoline-4 may be related to the pK value of 4-methylthiazole, which is between those of lepidine and 2-picoline (25. 55). This reaction explains also why a neutrodimethine cyanine is obtained with such good yields when reacting together a quaternary salt, ketomethylene, and o-ester in a basic medium. As the reaction proceeds, the trimethine cyanine is attacked by the ketomethylene. The resulting 2-methyl quaternary salt is transformed into trimethine cyanine, consuming the totality of the ketomethylene (1, p. 512 661). The mesosubstituted neutrodimethine cyanine is practically pure. [Pg.62]

Ester hydrolysis in base is called saponification, which means soap making Over 2000 years ago the Phoenicians made soap by heating animal fat with wood ashes Animal fat is rich m glycerol triesters and wood ashes are a source of potassium car bonate Basic hydrolysis of the fats produced a mixture of long chain carboxylic acids as their potassium salts... [Pg.853]

Once It was established that hydroxide ion attacks the carbonyl group in basic ester hydrolysis the next question to be addressed concerned whether the reaction is concerted or involves a tetrahedral intermediate In a concerted reaction the bond to the leaving group breaks at the same time that hydroxide ion attacks the carbonyl... [Pg.855]

In an extension of the work described m the preceding section Bender showed that basic ester hydrolysis was not concerted and like acid hydrolysis took place by way of a tetrahedral intermediate The nature of the experiment was the same and the results were similar to those observed m the acid catalyzed reaction Ethyl benzoate enriched m 0 at the carbonyl oxygen was subjected to hydrolysis m base and samples were isolated before saponification was complete The recovered ethyl benzoate was found to have lost a por tion of Its isotopic label consistent with the formation of a tetrahedral intermediate... [Pg.855]

FIGURE 20 5 The mechanism of ester hydrolysis in basic solution... [Pg.856]

On the basis of the general mechanism for basic ester hydro ... [Pg.856]

In base the tetrahedral intermediate is formed m a manner analogous to that pro posed for ester saponification Steps 1 and 2 m Figure 20 8 show the formation of the tetrahedral intermediate m the basic hydrolysis of amides In step 3 the basic ammo group of the tetrahedral intermediate abstracts a proton from water and m step 4 the derived ammonium ion dissociates Conversion of the carboxylic acid to its corresponding carboxylate anion m step 5 completes the process and renders the overall reaction irreversible... [Pg.865]

Section 20 11 Ester hydrolysis m basic solution is called saponification and proceeds through the same tetrahedral intermediate (Figure 20 5) as m acid catalyzed hydrolysis Unlike acid catalyzed hydrolysis saponification is irreversible because the carboxylic acid is deprotonated under the reac tion conditions... [Pg.876]

Saponification (Section 20 11) Hydrolysis of esters in basic solution The products are an alcohol and a carboxylate salt The term means soap making and denves from the process whereby animal fats were converted to soap by heating with wood ashes... [Pg.1293]


See other pages where Esters basicity is mentioned: [Pg.379]    [Pg.594]    [Pg.594]    [Pg.594]    [Pg.537]    [Pg.639]    [Pg.580]    [Pg.580]    [Pg.51]    [Pg.379]    [Pg.594]    [Pg.594]    [Pg.594]    [Pg.537]    [Pg.639]    [Pg.580]    [Pg.580]    [Pg.51]    [Pg.27]    [Pg.80]    [Pg.164]    [Pg.164]    [Pg.363]    [Pg.785]    [Pg.872]    [Pg.1091]    [Pg.22]    [Pg.144]    [Pg.146]    [Pg.380]    [Pg.393]    [Pg.896]    [Pg.1139]   
See also in sourсe #XX -- [ Pg.139 ]

See also in sourсe #XX -- [ Pg.203 ]

See also in sourсe #XX -- [ Pg.196 ]

See also in sourсe #XX -- [ Pg.203 ]

See also in sourсe #XX -- [ Pg.378 ]




SEARCH



Barton esters basics

Basic esters, chemical hydrolysis

Basic hydrolysis of esters

Carboxylic acid esters basic

Carboxylic acid esters basic hydrolysis mechanism

Carboxylic esters, base basic hydrolysis

Ester Hydrolysis in Basic Solution

Ester acidity/basicity

Ester aminolysis in basic medium

Ester basic medium

Ester long-chain, basic hydrolysis

Esters aluminium basicity

Esters basic hydrolysis

Nucleophilic Acyl Substitution in the Basic Hydrolysis of an Ester

Reactions of very weakly basic acids and esters

Tetrahydrofuran , basicity esters

The basicity of carboxylic acids and esters

© 2024 chempedia.info