Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thiols reactions with alkenes

Osmium tetroxide, reaction with alkenes, 235-236 toxicity of, 235 Oxalic add, structure of, 753 Oxaloacetic acid, structure of, 753 Oxetane, reaction with Grignard reagents, 680 Oxidation, 233, 348 alcohols, 623-626 aldehydes, 700-701 aldoses, 992-994 alkenes, 233-236 biological, 625-626 phenols, 631 sulfides, 670 thiols, 668... [Pg.1310]

Several heteroatom nucleophiles, for example, amines, alcohols, thiols, carboxylates, and dialkylphosphines, undergo Michael addition reactions with alkene- and alkyne-substituted carbene complexes. Reaction of alkyne-substituted chromium carbenes with urea affords products derived from Michael... [Pg.3221]

Derivatives. TrimethylsUylacetyl thiolesters, which have been used as precursors to 8-lactams, are prepared by reaction of the appropriate thiol with the acid chloride derivative of (1). Acid (1) has also been used as a precursor to l-diazo-3-trimethylsilyl-acetone, which provides cyclopropyl trimethylsilylmethyl ketones upon reaction with alkenes, through reaction of the acid chloride or a mixed anhydride derivatives of the acid (1) with diazomethane. ... [Pg.562]

Acid-Gatalyzed Synthesis. The acid-catalysed reaction of alkenes with hydrogen sulfide to prepare thiols can be accompHshed using a strong acid (sulfuric or phosphoric acid) catalyst. Thiols can also be prepared continuously over a variety of soHd acid catalysts, such as seoHtes, sulfonic acid-containing resin catalysts, or aluminas (22). The continuous process is utilised commercially to manufacture the more important thiols (23,24). The acid-catalysed reaction is commonly classed as a Markownikoff addition. Examples of two important industrial processes are 2-methyl-2-propanethiol and 2-propanethiol, given in equations 1 and 2, respectively. [Pg.10]

Formation of Sulfides. Thiols react readily with alkenes under the same types of conditions used to manufacture thiols. In this way, dialkyl sulfides and mixed alkyl sulfides can be produced. Sulfides are a principal by-product of thiol production. Mixed sulfides can be formed by the reaction of the thiol using a suitable starting material, as shown in equations 21, 22, and 23. Vinyl sulfides can be produced by the reaction of alkynes with thiols (38). [Pg.12]

Thiols add to alkenes under photochemical conditions to form thioethers, and the reaction can be done intramolecularly to give cyclic thioethers. Thiols also add to alkynes and with a palladium catalyst, vinyl sulfides can be formed. " Selenium compounds (RSeH) add in a similar manner. ... [Pg.999]

The hydrothiolation of electron-deficient alkenes [X = CN, C(=0)(0Me)] and p-nitro-styrene was catalysed by the Cu complexes 98 and 99. The reactions with phenyl- or benzyl-thiol proceed with high conversions (>90%, rt, 5 mol%). [Pg.45]

The addition of Grignard reagents to aldehydes, ketones, and esters is the basis for the synthesis of a wide variety of alcohols, and several examples are given in Scheme 7.3. Primary alcohols can be made from formaldehyde (Entry 1) or, with addition of two carbons, from ethylene oxide (Entry 2). Secondary alcohols are obtained from aldehydes (Entries 3 to 6) or formate esters (Entry 7). Tertiary alcohols can be made from esters (Entries 8 and 9) or ketones (Entry 10). Lactones give diols (Entry 11). Aldehydes can be prepared from trialkyl orthoformate esters (Entries 12 and 13). Ketones can be made from nitriles (Entries 14 and 15), pyridine-2-thiol esters (Entry 16), N-methoxy-A-methyl carboxamides (Entries 17 and 18), or anhydrides (Entry 19). Carboxylic acids are available by reaction with C02 (Entries 20 to 22). Amines can be prepared from imines (Entry 23). Two-step procedures that involve formation and dehydration of alcohols provide routes to certain alkenes (Entries 24 and 25). [Pg.638]

Therefore, surface modification strategies for the formation of direct silicon-carbon bonds require, first, a special pre-treatment of the silicon surface to prevent oxidation and, second, an activation of the silicon surface for subsequent reaction with organic moieties. This has been achieved by treatment of the silicon surface with hydrofluoric acid to generate a hydrogen-terminated Si(lll) surface, which can further react with unsaturated co-functionahzed alkenes in the presence of UV irradiation or by thermal activation [27,44,45]. Using this method, carboxylic acid modified silicon substrates have been successfully generated and coupled to thiol modified ONDs via a polylysine/sulfosuccinimidyl 4-(M-maleimidomethyl)-cyclohexane-l-carboxylate couphng (Fig. 12). [Pg.91]


See other pages where Thiols reactions with alkenes is mentioned: [Pg.79]    [Pg.415]    [Pg.137]    [Pg.998]    [Pg.403]    [Pg.634]    [Pg.28]    [Pg.479]    [Pg.95]    [Pg.299]    [Pg.166]    [Pg.195]   
See also in sourсe #XX -- [ Pg.998 ]




SEARCH



Reaction with alkenes

Reaction with thiols

Thiol Reactions

Thiols alkenes

© 2024 chempedia.info