Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thiolase, reaction catalyzed

The final step in the /3-oxidation cycle is the cleavage of the /3-ketoacyI-CoA. This reaction, catalyzed by thiolase (also known as j8-ketothiolase), involves the attack of a cysteine thiolate from the enzyme on the /3-carbonyI carbon, followed by cleavage to give the etiolate of acetyl-CoA and an enzyme-thioester intermediate (Figure 24.17). Subsequent attack by the thiol group of a second CoA and departure of the cysteine thiolate yields a new (shorter) acyl-CoA. If the reaction in Figure 24.17 is read in reverse, it is easy to see that it is a Claisen condensation—an attack of the etiolate anion of acetyl-CoA on a thioester. Despite the formation of a second thioester, this reaction has a very favorable A).q, and it drives the three previous reactions of /3-oxidation. [Pg.788]

Ketone body synthesis occurs only in the mitochondrial matrix. The reactions responsible for the formation of ketone bodies are shown in Figure 24.28. The first reaction—the condensation of two molecules of acetyl-CoA to form acetoacetyl-CoA—is catalyzed by thiolase, which is also known as acetoacetyl-CoA thiolase or acetyl-CoA acetyltransferase. This is the same enzyme that carries out the thiolase reaction in /3-oxidation, but here it runs in reverse. The second reaction adds another molecule of acetyl-CoA to give (i-hydroxy-(i-methyl-glutaryl-CoA, commonly abbreviated HMG-CoA. These two mitochondrial matrix reactions are analogous to the first two steps in cholesterol biosynthesis, a cytosolic process, as we shall see in Chapter 25. HMG-CoA is converted to acetoacetate and acetyl-CoA by the action of HMG-CoA lyase in a mixed aldol-Claisen ester cleavage reaction. This reaction is mechanistically similar to the reverse of the citrate synthase reaction in the TCA cycle. A membrane-bound enzyme, /3-hydroxybutyrate dehydrogenase, then can reduce acetoacetate to /3-hydroxybutyrate. [Pg.798]

In order to produce PHAs in plants it is necessary to introduce the biosynthetic enzymes from bacteria. PHB represents the best characterized and simplest form of PHA, and the synthetic pathway (Figure 4.2) has been extensively studied in Ralstonia eutropha. 30,31 Starting from acetyl-CoA, a P-ketothiolase is required in order to form acetoacetyl-CoA. This is then reduced by a NADPH-dependent acetoacetyl-CoA reductase, which gives rise to 3-hydroxybutyryl-CoA. The latter intermediate is the substrate for the polymerization reaction catalyzed by polyhydroxybutyrate synthase.30 In Ralstonia eutropha, the thiolase, reductase, and synthase genes make up an operon.31... [Pg.68]

In extraliepatic tissues, d-/3-hydroxybutyrate is oxidized to acetoacetate by o-/3-hydroxybutyrate dehydrogenase (Fig. 17-19). The acetoacetate is activated to its coenzyme A ester by transfer of CoA from suc-cinyl-CoA, an intermediate of the citric acid cycle (see Fig. 16-7), in a reaction catalyzed by P-ketoacyl-CoA transferase. The acetoacetyl-CoA is then cleaved by thiolase to yield two acetyl-CoAs, which enter the citric acid cycle. Thus the ketone bodies are used as fuels. [Pg.651]

The sequence of cholesterol biosynthesis begins with a condensation in the cytosol of two molecules of acetyl-CoA in a reaction catalyzed by thiolase (fig. 20.3). The next step requires the enzyme /3-hydroxy-/3-methylglutaryl-CoA (HMG-CoA) synthase. This enzyme catalyzes the condensation of a third acetyl-CoA with /3-ketobutyryl-CoA to yield HMG-CoA. HMG-CoA is then reduced to mevalonate by HMG-CoA reductase. The activity of this reductase is primarily responsible for control of the rate of cholesterol biosynthesis. [Pg.461]

Certain CoA thioester using enzymes catalyze reactions at the fS-carbon or other carbons of the acyl group more distant from the thioester functionality. The fatty acid fi-oxidation cycle provides some examples (Fig. 3). Fatty acids 7 enter the cycle by initial conversion to the CoA ester 8, which is then oxidized to the a,P-unsaturated thioester 9 by a flavin-dependent enzyme. Addition of water to the double bond to form the fi-hydroxy thioester 10 is catalyzed by the enzyme crotonase, which is the centerpiece of the crotonase superfamily of enzymes that catalyze related reactions (37), which is followed by oxidation of the alcohol to form the fi-keto thioester 11. A retro-Claisen reaction catalyzed by thiolase forms acetyl-CoA 12 along with a new acyl-CoA 13 having a carbon chain two carbons shorter than in the initial or previous cycle. [Pg.239]

Acetoacetate can be activated by the transfer of CoA from succinyl CoA in a reaction catalyzed by a specific CoA transferase. Acetoacetyl CoA is then cleaved by thiolase to yield two molecules of acetyl CoA, which can then enter the citric acid cycle (Figure 22.20). The liver has acetoacetate available to supply to other organs because it lacks this particular CoA transferase. [Pg.913]

The answer is d. (Murray, pp 230-267. Scriver, pp 2297-2326. Sack, pp 121-138. Wilson, pp 287-320.) Fatty acids must be activated before being oxidized. In this process, they are linked to CoA in a reaction catalyzed by thiokinase (also known as acyl CoA synthetase). ATP is hydrolyzed to AMP plus pyrophosphate in this reaction. In contrast, the enzyme thiolase cleaves off acetyl CoA units from p-ketoacyl CoA, while it forms thioesters during P oxidation. [Pg.227]

Reaction 5. The final reaction, catalyzed by the enzyme thiolase, is the cleavage that releases acetyl CoA. This is accomplished by thiolysis, attack of a molecule of coenzyme A on the p-carbon. The result is the release of acetyl CoA and a fatty acyl CoA that is two carbons shorter than the beginning fatty acid ... [Pg.698]

In discussions on the mechanisms of the enzymes involved in each pathway, there will be a particular focus on three superfamilies enzymes that share the thiolase fold and catalyze carbon—carbon bond formation and cleavage reactions catalyzed by NAD(P)-dependent enzymes in the fatty acid biosynthesis pathway involve proteins that are members of the short-chain dehydrogenase reductase (SDR) superfamily and finally there are mechanistic parallels between the hydration and dehydration reactions in each pathway with a particular focus on the crotonase superfamily. [Pg.232]

Step 4 of Figure 29.3 Chain Cleavage Acetyl CoA is split off from the chain in the final step of /3-oxidation, leaving an acyl CoA that is two carbon atoms shorter than the original. The reaction is catalyzed by /3-ketoacyl-CoA thiolase and is mechanistically the reverse of a Claisen condensation reaction (Section 23.7). In the forward direction, a Claisen condensation joins two esters together to form a /3-keto ester product. In the reverse direction, a retro-Claisen reaction splits a /3-keto ester (or /3-keto thioester) apart to form two esters (or two thioesters). [Pg.1136]

Desaturation of alkyl groups. This novel reaction, which converts a saturated alkyl compound into a substituted alkene and is catalyzed by cytochromes P-450, has been described for the antiepileptic drug, valproic acid (VPA) (2-n-propyl-4-pentanoic acid) (Fig. 4.29). The mechanism proposed involves formation of a carbon-centered free radical, which may form either a hydroxy la ted product (alcohol) or dehydrogenate to the unsaturated compound. The cytochrome P-450-mediated metabolism yields 4-ene-VPA (2-n-propyl-4pentenoic acid), which is oxidized by the mitochondrial p-oxidation enzymes to 2,4-diene-VPA (2-n-propyl-2, 4-pentadienoic acid). This metabolite or its Co A ester irreversibly inhibits enzymes of the p-oxidation system, destroys cytochrome P-450, and may be involved in the hepatotoxicity of the drug. Further metabolism may occur to give 3-keto-4-ene-VPA (2-n-propyl-3-oxo-4-pentenoic acid), which inhibits the enzyme 3-ketoacyl-CoA thiolase, the terminal enzyme of the fatty acid oxidation system. [Pg.92]

The fourth and last step of the /3-oxidation cycle is catalyzed by acyl-CoA acetyltransferase, more commonly called thiolase, which promotes reaction of /3-ketoacyl-CoA with a molecule of free coenzyme A to split off the carboxyl-terminal two-carbon fragment of the original fatty acid as acetyl-CoA The other product is the coenzyme A thioester of the fatty acid, now shortened by two carbon atoms (Fig. 17-8a). This reaction is called thiolysis, by analogy with the process of hydrolysis, because the /3-ketoacyl-CoA is cleaved by reaction with the thiol group of coenzyme A... [Pg.638]

The last three steps of this four-step sequence are catalyzed by either of two sets of enzymes, with the enzymes employed depending on the length of the fatty acyl chain. For fatty acyl chains of 12 or more carbons, the reactions are catalyzed by a multienzyme complex associated with the inner mitochondrial membrane, the trifunctional protein (TFP). TFP is a heterooctamer of 4/34 subunits. Each a subunit contains two activities, the enoyl-CoA hydratase and the /3-hydroxyacyl-CoA dehydrogenase the /3 subunits contain the thiolase activity. This tight association of three enzymes may allow efficient substrate channeling from one active site to the... [Pg.638]

Healthy, well-nourished individuals produce ketone bodies at a relatively low rate. When acetyl-CoA accumulates (as in starvation or untreated diabetes, for example), thiolase catalyzes the condensation of two acetyl-CoA molecules to acetoacetyl-CoA, the parent compound of the three ketone bodies The reactions of ketone body formation occur in the matrix of liver mitochondria. The six-carbon compound /3-hydroxy-/3-methylglutaryl-CoA (HMG-CoA) is also an intermediate of sterol biosynthesis, but the enzyme that forms HMG-CoA in that pathway is cytosolic. HMG-CoA lyase is present only in the mitochondrial matrix. [Pg.651]

Stage Synthesis of Mevalonate from Acetate The first stage in cholesterol biosynthesis leads to the intermediate mevalonate (Fig. 21-34). Two molecules of acetyl-CoA condense to form acetoacetyl-CoA, which condenses with a third molecule of acetyl-CoA to yield the six-carbon compound /3-hydroxy-/3-methylglu-taryl-CoA (HMG-CoA). These first two reactions are catalyzed by thiolase and HMG-CoA synthase, respectively. The cytosolic HMG-CoA synthase in this pathway is distinct from the mitochondrial isozyme that catalyzes HMG-CoA synthesis in ketone body formation (see Fig. 17-18). [Pg.817]

The reverse of the above reaction is a key step in the oxidative degradation of fatty acids. This reverse Claisen condensation (catalyzed by thiolase) involves the cleavage of a carbon-carbon bond of a /3-keto ester of coenzyme A by another molecule of coenzyme A to give a new acyl derivative (RCO—SCoA) and ethanoyl (acetyl) derivative (CH3CO—SCoA) ... [Pg.838]

Enzymes catalyzing reactions (19.8) and (19.9) are present in very minor amounts in the liver, and hence liver is a ketone body exporter rather than user. Acetoacetyl-CoA is converted to two acetyl-CoA molecules by the action of a thiolase, and the acetyl-CoA is used in the Krebs cycle. 1 mol /3-D-hydroxybutyrate... [Pg.516]

Most tissues oxidize the acetyl-CoA produced during P-oxidation to C02 and water via the TCA cycle. During fasting, however, the liver utilizes the intermediates of the TCA cycle as gluconeogenic substrates. Under these conditions, the Ever converts acetyl-CoA to ketone bodies (acetoacetate and P-hydroxybutyrate) (Figure 32-5). Most other peripheral tissues can oxidize ketone bodies by the pathway shown in the figure. After entering the mitochondria, acetoacetate reacts with succinyl-CoA to form acetoacetyl-CoA, a reaction that is catalyzed by 3-oxoacid-CoA transferase. Alternatively, acetoacetyl-CoA is formed by direct activation of acetoacetate by the enzyme acetoacetyl-CoA synthetase. Acetoacetyl-CoA is then cleaved to form two molecules of acetyl-CoA by acetoacetyl-CoA thiolase.As noted earlier in... [Pg.352]


See other pages where Thiolase, reaction catalyzed is mentioned: [Pg.835]    [Pg.418]    [Pg.419]    [Pg.897]    [Pg.388]    [Pg.392]    [Pg.167]    [Pg.239]    [Pg.241]    [Pg.241]    [Pg.269]    [Pg.478]    [Pg.89]    [Pg.97]    [Pg.274]    [Pg.181]    [Pg.219]    [Pg.274]    [Pg.374]    [Pg.58]    [Pg.639]    [Pg.699]    [Pg.414]    [Pg.205]    [Pg.793]    [Pg.1199]    [Pg.361]   
See also in sourсe #XX -- [ Pg.414 , Pg.461 , Pg.462 ]




SEARCH



Thiolases

© 2024 chempedia.info