Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thin-layer cyclic voltammetry

An extremely slow rate of conversion can be determined with the use of thin layer cyclic voltammetry (TLCV) [25]. TLCV was performed on 1 mL of acetone solution that was admitted to a compartment (0.08 mm thickness layer) of an electrochemical cell equipped with a platinum-mesh working electrode (Fig. 15). This constitutes bulk electrolysis in the solution. When the potential is increased, le oxidation takes place at 0.83 V, producing A. Upon a further increase in the potential to about 1.48 V, the fully oxidized species A" is formed, which isomerizes to B. On decreasing the applied potential, two reduction waves are obtained. The simulation (the dotted line in Fig. 15a) of the scheme shown in Fig. 13 without the conversion is in good agreement with the experiment. [Pg.132]

Thin-Layer Cyclic Voltammetry Using Orthogonal Collocation... [Pg.101]

C PROGRAM FOR THIN LAYER CYCLIC VOLTAMMETRY USING IMPLICIT METHOD... [Pg.117]

Bryce and coworkers have synthesized dendrimers that contain TTF units at the core, at each of the dendritic bifurcations, and at the end of each branch. The redox properties of these materials were studied using thin-layer cyclic voltammetry, and it was observed that all TTF units were oxidized simultaneously and completely giving, for the largest dendrimer, the +21 cation radical (TTF " )2i and the +42 dication (TTF+ )2i [67, 68]. An in-tradendrimer aggregation of the cation radical redox centers was observed during spectroelectrochemical studies of these compounds [68]. [Pg.5950]

If the film is nonconductive, the ion must diffuse to the electrode surface before it can be oxidized or reduced, or electrons must diffuse (hop) through the film by self-exchange, as in regular ionomer-modified electrodes.9 Cyclic voltammograms have the characteristic shape for diffusion control, and peak currents are proportional to the square root of the scan speed, as seen for species in solution. This is illustrated in Fig. 21 (A) for [Fe(CN)6]3 /4 in polypyrrole with a pyridinium substituent at the 1-position.243 This N-substituted polypyrrole does not become conductive until potentials significantly above the formal potential of the [Fe(CN)6]3"/4 couple. In contrast, a similar polymer with a pyridinium substituent at the 3-position is conductive at this potential. The polymer can therefore mediate electron transport to and from the immobilized ions, and their voltammetry becomes characteristic of thin-layer electrochemistry [Fig. 21(B)], with sharp symmetrical peaks that increase linearly with increasing scan speed. [Pg.589]

Method Abs, chemical reduction, monitored by absorption spectroscopy CD, chemical reduction, monitored by CD spectroscopy CD/OTTLE, electrochemical reduction using an optically transparent thin layer (OTTLE) cell, monitored by CD spectroscopy CV, cyclic voltammetry EPR, chemical reduction, monitored by EPR. [Pg.137]

It was reported recently [216] that optical-quality PbTe thin films can be directly electrodeposited onto n-type Si(lOO) substrates, without an intermediate buffer layer, from an acidic (pH 1) lead acetate, tellurite, stirred solution at 20 °C. SEM, EDX, and XRD analyses showed that in optimal deposition conditions the films were uniform, compact, and stoichiometric, made of fine, 50-100 nm in size, crystallites of a polycrystalline cubic structure, with a composition of 51.2 at.% Pb and 48.8 at.% Te. According to optical measurements, the band gap of the films was 0.31 eV and of a direct transition. Cyclic voltammetry indicated that the electrodeposition occurred via an induced co-deposition mechanism. [Pg.127]

Potential step voltammetry (chronoamperometry) or normal pulse voltammetry (NPV) and potential sweep or cyclic voltammetry (CV) were employed for investigating drugs at the NB/W or DCE/W interface. A thin O-layer cell [15,16,23] was used to realize the partition equilibrium of neutral species (that is, B) at the O/W interface initially at t = 0 within a reasonably short time. All measurements were carried out at 25°C. Experimental details should be consulted in the references cited. [Pg.687]

Aniline, methyl aniline, 1-naphthylamine, and diphenylamine at trace levels were determined using this technique and electrochemical detection. Two electrochemical detectors (a thin-layer, dual glassy-carbon electrode cell and a dual porous electrode system) were compared. The electrochemical behavior of the compounds was investigated using hydrodynamic and cyclic voltammetry. Detection limits of 15 and 1.5nmol/l were achieved using colourimetric and amperometric cells, respectively, when using an in-line preconcentration step. [Pg.412]

The abrupt transition to the 6,7 orientation manifests itself in cyclic voltammetry as a sharp current spike (Figure 6). The cathodic spike was found to contain a charge of 2.9 fiC cm, while its anodic counterpart contained 3.3 pC cm". The peak separation was 100 mV this large value is due to the large iR losses suffered in the thin layer cell. [Pg.344]

Smooth polycrystalline Au, Pt and Ir thin-layer electrodes were utilized (10-11). Electrodes were cleaned between trials by sequential electrochemical oxidation above 1.2 V [Ag/AgCl (1 M Cl-) reference] and reduction below -0.2 V in 1 M H2SO4 surface cleanliness was verified with the aid of cyclic voltammetry in the same molar sulfuric acid solution. Experiments were carried out in 1 M H2SO4, 1 M NaC104 buffered at pH 7 and 10, and in 1 M NaOH solutions were prepared with pyrolytically triply distilled water (12). Surface reagents employed were iodide, hydroquinone (HQ), 2,5-dihydroxythiophenol [DHT (13)1. and 3,6-dihydroxypyridazine (DHPz). [Pg.530]

The double-layer structure at the electro-chemically polished and chemically treated Cd(OOOl), Cd(lOlO), Cd(1120), Cd(lOh), and Cd(1121) surface electrodes was studied using cyclic voltammetry, impedance spectroscopy, and chronocoulometry [9, 10]. The limits of ideal polarizahility, Epzc, and capacity of the inner layer were established in the aqueous surface inactive solutions. The values of iipzc decrease, and the capacity of the inner layer increases, if the superficial density of atoms decreases. The capacity of metal was established using various theoretical approximations. The effective thickness of the thin metal layer increases in the sequence of planes Cd(1120) < Cd(lOiO) < Cd(OOOl). It was also found that the surface activity of C104 was higher than that of F anions [10]. [Pg.769]

The characterization of the semiquinone radical anion species of PQQ in aprotic solvents was undertaken to provide information about the electrochemistry of coenzyme PQQ and to give valuable insight into the redox function of this coenzyme in living systems <1998JA7271>. The trimethyl ester of PQQ and its 1-methylated derivative were examined in aprotic organic solvents by cyclic voltammetry, electron spin resonance (ESR), and thin-layer UV-Vis techniques. The polar solvent CH3CN was found to effectively solvate the radical anion species at the quinone moiety, where the spin is more localized, whereas the spin is delocalized into the whole molecule in the nonpolar solvent CH2CI2. [Pg.1205]

Plasma polymerized N-vinyl-2-pyrrolidone films were deposited onto a poly(etherurethaneurea). Active sites for the immobilization were obtained via reduction with sodium borohydride followed by activation with l-cyano-4-dimethyl-aminopyridinium tetrafluoroborate. A colorometric activity determination indicated that 2.4 cm2 of modified poly(etherurethaneurea) film had an activity approximately equal to that of 13.4 nM glucose oxidase in 50 mM sodium acetate with a specific activity of 32.0 U/mg at pH 5.1 and room temperature. Using cyclic voltammetry of gold in thin-layer electrochemical cells, the specific activity of 13.4 nM glucose oxidase in 0.2 M aqueous sodium phosphate, pH 5.2, was calculated to be 4.34 U/mg at room temperature. Under the same experimental conditions, qualitative detection of the activity of a modified film was demonstrated by placing it inside the thin-layer cell. [Pg.90]

As outlined above, the electrochemical properties of this redox species are strongly pH-dependent and this behavior can be used to illustrate the supramolecular nature of the interaction between the polymer backbone and the pendent redox center. The cyclic voltammetry data shown in Figure 4.17 are obtained at pH = 0, where the polymer has an open structure and the free pyridine units are protonated (pKa(PVP) = 3.3). The cyclic voltammograms obtained for the same experiment carried out at pH 5.7 are shown in Figure 4.18. At this pH, the polymer backbone is not protonated and upon aquation of the metal center the layer becomes redox-inactive, since protons are involved in this redox process. This interaction between the redox center and the polymer backbone is typical for these types of materials. Such an interaction is of fundamental importance for the electrochemical behavior of these layers and highlights the supramolecular principles which control the chemistry of thin films of these redox-active polymers. Finally, it is important to note that the photophysical properties of polymer films are very similar to those observed in solution. Since the layer thickness is much more than that of a monolayer, deactivation by the solid substrate is not observed. [Pg.134]

After a description of how to control the sweep experiment and its two forms, linear sweep voltammetry (LSV) and cyclic voltammetry (CV) (where the sweep direction is inverted at a certain, chosen potential), the voltammetric waveshape obtained for slow and fast electrode reactions is analysed. Recent advances in these topics are considered. Finally, the type of curve obtained from linear sweep in a thin-layer cell is presented thin-layer cells are important because they permit almost 100 per cent conversion of the electroactive species, and show differences in relation to electrochemical behaviour in a normal-sized cell. [Pg.175]


See other pages where Thin-layer cyclic voltammetry is mentioned: [Pg.64]    [Pg.145]    [Pg.2349]    [Pg.727]    [Pg.272]    [Pg.64]    [Pg.145]    [Pg.2349]    [Pg.727]    [Pg.272]    [Pg.158]    [Pg.115]    [Pg.123]    [Pg.268]    [Pg.69]    [Pg.398]    [Pg.8]    [Pg.10]    [Pg.332]    [Pg.312]    [Pg.74]    [Pg.62]    [Pg.220]    [Pg.262]    [Pg.272]    [Pg.572]    [Pg.109]    [Pg.964]    [Pg.338]    [Pg.86]    [Pg.121]    [Pg.272]    [Pg.93]    [Pg.101]    [Pg.77]   


SEARCH



Cyclic voltammetry

Hopscotch Algorithm for Cyclic Voltammetry in a Thin Layer

Thin-Layer Cyclic Voltammetry Using Orthogonal Collocation

Thin-layer cyclic voltammetry TLCV)

© 2024 chempedia.info