Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thin film characterization spectroscopy

LIMITATIONS OF RAMAN SPECTROSCOPY FOR THIN FILM CHARACTERIZATION... [Pg.182]

Although optical vibrational techniques are less sensitive than electron-based spectro-metric methods, these techniques are employed extensively for thin-film characterization because of the specific and characteristic vibrational spectrum shown by various functional groups and molecules present in the film. The most commonly used vibrational spectroscopic techniques are infrared (IR) and Raman spectroscopy. Because of the interference caused by absorption of IR by the underlying substrate, IR reflection-adsorption spectroscopy (IRRAS) and its polarization modulation (PM) analog, PM-IRRAS, which uses the polarization selectivity of surface adsorption, are typically employed to characterize thin films (Gregoriou and Rodman, 2006). [Pg.97]

Physical Properties. Raman spectroscopy is an excellent tool for investigating stress and strain in many different materials (see Materlals reliability). Lattice strain distribution measurements in siUcon are a classic case. More recent examples of this include the characterization of thin films (56), and measurements of stress and relaxation in silicon—germanium layers (57). [Pg.214]

For applied work, an optical characterization technique should be as simple, rapid, and informative as possible. Other valuable aspects are the ability to perform measurements in a contactless manner at (or even above) room temperature. Modulation Spectroscopy is one of the most usehil techniques for studying the optical proponents of the bulk (semiconductors or metals) and surface (semiconductors) of technologically important materials. It is relatively simple, inexpensive, compact, and easy to use. Although photoluminescence is the most widely used technique for characterizing bulk and thin-film semiconductors. Modulation Spectroscopy is gainii in popularity as new applications are found and the database is increased. There are about 100 laboratories (university, industry, and government) around the world that use Modulation Spectroscopy for semiconductor characterization. [Pg.387]

For characterization purposes of bulk or thin-film semiconductors the features at Eq and E] are the most useflil. In a number of technologically important semiconductors (e.g., Hgi j d Te, and In Gai j ) the value of. ) is so small that it is not in a convenient spectral range for Modulation Spectroscopy, due to the limitations of light sources and detectors. In such cases the peak at E can be used. The features at Eq and are not useflil since they occur too far into the near-ultraviolet and are too broad. [Pg.388]

Infrared spectroscopy, including Fourier-transform infrared (FTIR) spectroscopy, is one of the oldest techniques used for surface analysis. ATR has been used for many years to probe the surface composition of polymers that have been surface-modified by an etching process or by deposition of a film. RAIR has been widely used to characterize thin films on the surfaces of specular reflecting substrates. FTIR has numerous characteristics that make it an appropriate technique for... [Pg.243]

Recently, a eutectic mixture of choline chloride and urea (commercially known as Reline) was used as a medium from which CdS, as well as CdSe and ZnS, thin films were electrodeposited for the first time [53]. Reline is a conductive room-temperature ionic liquid (RTIL) with a wide electrochemical window. The voltammetric behavior of the Reline-Cd(II)-sulfur system was investigated, while CdS thin films were deposited at constant potential and characterized by photocurrent and electrolyte electroabsorbance spectroscopies. [Pg.93]

We have undertaken a series of experiments Involving thin film models of such powdered transition metal catalysts (13,14). In this paper we present a brief review of the results we have obtained to date Involving platinum and rhodium deposited on thin films of tltanla, the latter prepared by oxidation of a tltanliua single crystal. These systems are prepared and characterized under well-controlled conditions. We have used thermal desorption spectroscopy (TDS), Auger electron spectroscopy (AES) and static secondary Ion mass spectrometry (SSIMS). Our results Illustrate the power of SSIMS In understanding the processes that take place during thermal treatment of these thin films. Thermal desorption spectroscopy Is used to characterize the adsorption and desorption of small molecules, In particular, carbon monoxide. AES confirms the SSIMS results and was used to verify the surface cleanliness of the films as they were prepared. [Pg.81]

Kuranouchi, S. Konagai, M. 1995. Characterization of ZnO/CdS/CuInSe2 thin-film solar cells by deep-level transient spectroscopy. Jpn. J. Appl. Phys. 34 2350-2351. [Pg.236]

Gonzalez-Elipe, A.R. (2000 a) Iron oxide thin films prepared by ion beam induced chemical vapour depositions. Structural characterization by infrared spectroscopy. J. Vac. [Pg.645]

A very common and useful approach to studying the plasma polymerization process is the careful characterization of the polymer films produced. A specific property of the films is then measured as a function of one or more of the plasma parameters and mechanistic explanations are then derived from such a study. Some of the properties of plasma-polymerized thin films which have been measured include electrical conductivity, tunneling phenomena and photoconductivity, capacitance, optical constants, structure (IR absorption and ESCA), surface tension, free radical density (ESR), surface topography and reverse osmosis characteristics. So far relatively few of these measurements were made with the objective of determining mechanisms of plasma polymerization. The motivation in most instances was a specific application of the thin films. Considerable emphasis on correlations between mass spectroscopy in polymerizing plasmas and ESCA on polymer films with plasma polymerization mechanisms will be given later in this chapter based on recent work done in this laboratory. [Pg.13]

Many investigations of the molecular structure of thin films formed by y-APS deposited onto inorganic substrates from aqueous solutions have been carried out. Ondrus and Boerio [2] used reflection-absorption infrared spectroscopy (RAIR) to determine the structure of y-APS films deposited on iron, 1100 aluminum, 2024 aluminum, and copper substrates from aqueous solutions at pH 10.4. They found that the as-formed films absorbed carbon dioxide and water vapor to form amine bicarbonate salts which were characterized by absorption bands near 1330, 1470, 1570, and 1640 cm-1. y-APS films had to be heated to temperatures above about 90°C in order to dissociate the bicarbonates, presumably to free amine, carbon dioxide, and water. Since the amine bicarbonates failed to react with epoxies, the strength of adhesive joints prepared... [Pg.241]

The determination of specific phosphorus compounds in thin films is important. Only through wet chemical analysis was it possible to first discover the presence and then to accurately measure the quantities of P2Os, P203, and phosphine found in plasma, plasma-enhanced, LPO-LTO (low-pressure oxide-low-temperature oxide), and CVD (chemical vapor deposition) processes (3). Methods such as X-ray or FTIR spectroscopy would have seen all phosphorus atoms and would have characterized them as totally useful phosphorus. In plasma and plasma-enhanced CVD films, phosphine is totally useless in doping processes. [Pg.517]

Coleman, L.B. Fiske, T.G. Stroeve, P. Coelho, M.A.N. Dong, S. Ringsdorf, H. Schneider, J. Thin Solid Films. 1989,178. 227. Swalen, J.D. Rabolt, J.F. Characterization of Orientation and Lateral Order in Thin Films by Fourier Transform Infrared Spectroscopy , in Fourier Transform Infrared Spectroscopy. 1905,4,283. [Pg.191]

Vogt, O., Grass, B., Weber, G., Hergenroder, R., Siepe, D., Neyer, A., Pohl, J.P., Characterization of sputtered thin film electrodes on PMMA microchips with electrochemical impedance spectroscopy and cyclic voltammetry. Micro Total Analysis Systems, Proceedings 5th lTAS Symposium, Monterey, CA, Oct. 21-25, 2001, 327-328. [Pg.425]

Considerable progress has been made in studying tribofilms in the last decade. A number of important surface and thin film techniques have been developed in recent years, which are contributing to a better understanding of at least some tribochemical processes of boundary lubrication. In recent years, X-ray absorption near edge structure XANES spectroscopy, a powerful technique for tribofilm characterization, was used to identify a layered structure (surface and bulk) of tribofilms. The chemistry of tribofilms generated by the combination of zinc dialkyldithiophosphate (ZDDP) and molybdenum dialkyldithiocarbamate (MoDTC) has been examined. [Pg.374]


See other pages where Thin film characterization spectroscopy is mentioned: [Pg.63]    [Pg.127]    [Pg.153]    [Pg.127]    [Pg.38]    [Pg.249]    [Pg.249]    [Pg.36]    [Pg.95]    [Pg.208]    [Pg.80]    [Pg.44]    [Pg.33]    [Pg.447]    [Pg.592]    [Pg.197]    [Pg.378]    [Pg.214]    [Pg.289]    [Pg.13]    [Pg.171]    [Pg.84]    [Pg.717]    [Pg.181]    [Pg.82]    [Pg.331]    [Pg.423]    [Pg.14]    [Pg.33]    [Pg.44]    [Pg.84]    [Pg.212]    [Pg.755]   
See also in sourсe #XX -- [ Pg.102 ]




SEARCH



Film characterization

Film spectroscopy

Spectroscopy characterization

Thin film characterization

Thin film characterization vibrational spectroscopy

Thin film characterized

© 2024 chempedia.info