Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermogravimetry/differential thermal analysis TG-DTA

In addition to routinely used methods, such as elemental analysis, IR and UV-vis-NIR spectra, thermogravimetry-differential thermal analysis (TG-DTA), single-crystal X-ray diffraction, and gas adsorption, there are some important characterization methods for coordination polymers. [Pg.244]

Recently, we have studied the states of ethylbenzoate (EB) and TiCh in the primary type of MgC -supported catalyst by thermogravimetry/ differential thermal analysis (TG-DTA) in combination with other methods, and found that TiCU and EB in the MgCh-supported catalyst interact only with MgCh, leaving no vacant sites on TiCU. ... [Pg.277]

The addition of various salts to potato starch on its compression up to 1.2 X 109 Pa had only a small effect on the thermal properties of starch, as measured by thermogravimetry/differential thermogravimetry/differential thermal analysis (TG/DTG/DTA). Only FeCl3, CoCl2, and I2 caused significant effects.62... [Pg.320]

The stability of the polyyne-type polymers can be examined by thermogravimetry and differential thermal analysis (TG/DTA). From the DTA curves in Figure 10.5, an exothermic peak is observed in all cases. The very broad peak for PpPE is observed around at 350°C, while the sharp peak is observed at 207°C for PpPB and at 138 C for PpPO, respectively. The exothermic peak temperature should be related with thermal stability of the polyyne-type polymers, thus it is concluded that the most stable is PpPE... [Pg.203]

Although the principal thermal analysis techniques are thermogravimetry, differential thermal analysis, and differential scanning calorimetry (see Chapter 1), there are a number of other thermal techniques, besides those discussed elsewhere in this book, that are useful for solving chemical and technological problems. Some of these methods are of recent development and hence little used at the present time, but they possess the potential for wider use in the future. Many of these techniques are employed to supplement or complement the three principal techniques of TG. DTA. and DSC, either in the simultaneous (single sample) or concurrent multiple samples) modes. [Pg.671]

Thermal analysis iavolves techniques ia which a physical property of a material is measured agaiast temperature at the same time the material is exposed to a coatroUed temperature program. A wide range of thermal analysis techniques have been developed siace the commercial development of automated thermal equipment as Hsted ia Table 1. Of these the best known and most often used for polymers are thermogravimetry (tg), differential thermal analysis (dta), differential scanning calorimetry (dsc), and dynamic mechanical analysis (dma). [Pg.149]

The techniques referred to above (Sects. 1—3) may be operated for a sample heated in a constant temperature environment or under conditions of programmed temperature change. Very similar equipment can often be used differences normally reside in the temperature control of the reactant cell. Non-isothermal measurements of mass loss are termed thermogravimetry (TG), absorption or evolution of heat is differential scanning calorimetry (DSC), and measurement of the temperature difference between the sample and an inert reference substance is termed differential thermal analysis (DTA). These techniques can be used singly [33,76,174] or in combination and may include provision for EGA. Applications of non-isothermal measurements have ranged from the rapid qualitative estimation of reaction temperature to the quantitative determination of kinetic parameters [175—177]. The evaluation of kinetic parameters from non-isothermal data is dealt with in detail in Chap. 3.6. [Pg.23]

Recently we investigated ferromagnetic properties of CoPt bimetallic nanoparticles [232,233]. CoPt3 nanoparticles can be prepared by a two-step reduction using NaBH4 as a reductant. The bimetallic nanoparticles were characterized by thermogravimetry (TG) and differential thermal analysis (DTA), FT-IR, TEM) and XRD. Structural and spectroscopic studies showed that the bimetallic nanoparticles adopt an fee crystalline structure with an average particle size of 2.6 nm. SQUID studies revealed... [Pg.70]

Shurygina EA, Larina NK, Chubarova MA, Kononova MM. Differential thermal analysis (DTA) and thermogravimetry (TG) of soil humus substances. Geoderma 1971 6 169-177. [Pg.191]

Thermal analytical techniques such as thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC) have all been successfully employed in studying the pyrotechnic reactions of energetic materials such as black powder, as well as of binary mixtures of the constituents. [Pg.30]

The thermal characterisation of elastomers has recently been reviewed by Sircar [28] from which it appears that DSC followed by TG/DTG are the most popular thermal analysis techniques for elastomer applications. The TG/differential thermal gravimetry (DTG) method remains the method of choice for compositional analysis of uncured and cured elastomer compounds. Sircar s comprehensive review [28] was based on single thermal methods (TG, DSC, differential thermal analysis (DTA), thermomechanical analysis (TMA), DMA) and excluded combined (TG-DSC, TG-DTA) and simultaneous (TG-fourier transform infrared (TG-FTIR), TG-mass spectroscopy (TG-MS)) techniques. In this chapter the emphasis is on those multiple and hyphenated thermogravimetric analysis techniques which have had an impact on the characterisation of elastomers. The review is based mainly on Chemical Abstracts records corresponding to the keywords elastomers, thermogravimetry, differential scanning calorimetry, differential thermal analysis, infrared and mass spectrometry over the period 1979-1999. Table 1.1 contains the references to the various combined techniques. [Pg.2]

All methods in which the sample to be analyzed is gradually heated and its calorimetric behavior studied. The method includes thermogravimetry (TG) and differential thermal analysis (DTA). [Pg.150]

The differential calorimetric curves (DSC) of the various crystalline forms of triamterene grown from organic solutions containing water and from absolute organic solutions, and the DSC curves of triamterene crystals dried under reduced pressure have been described. The differential thermal analysis-thermogravimetry analysis (DTA-TG) thermograms are also given. [Pg.581]

Detection and characterization of polymorphs and/or solvates rely on various experimental techniques. X-ray powder diffraction (XRPD), solid state nuclear magnetic resonance (NMR), solid state infrared (IR) and solid state Raman are useful in demonstrating differences in the solid state. Thermal analytical techniques, including differential thermal analysis (DTA), differential scanning calorimetry (DSC), and thermogravimetry (TG), are also... [Pg.50]


See other pages where Thermogravimetry/differential thermal analysis TG-DTA is mentioned: [Pg.61]    [Pg.167]    [Pg.208]    [Pg.175]    [Pg.130]    [Pg.61]    [Pg.167]    [Pg.208]    [Pg.175]    [Pg.130]    [Pg.56]    [Pg.339]    [Pg.301]    [Pg.928]    [Pg.137]    [Pg.344]    [Pg.1121]    [Pg.548]    [Pg.128]    [Pg.10]    [Pg.202]    [Pg.477]    [Pg.72]    [Pg.98]    [Pg.121]    [Pg.477]    [Pg.834]    [Pg.4]    [Pg.374]    [Pg.45]   


SEARCH



DTA

DTA = differential thermal analysi

Differential analysis

Differential thermal analysis, DTA

Differential thermogravimetry

Differential thermogravimetry analysis

Simultaneous Thermogravimetry-Differential Thermal Analysis (TG-DTA)

TG-DTA

TG/DTA analysis

Thermal thermogravimetry

Thermogravimetry

Thermogravimetry-differential thermal

Thermogravimetry/differential thermal analysis

© 2024 chempedia.info