Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics thermal conductivity

Physical Properties. Sulfur dioxide [7446-09-5] SO2, is a colorless gas with a characteristic pungent, choking odor. Its physical and thermodynamic properties ate Hsted in Table 8. Heat capacity, vapor pressure, heat of vaporization, density, surface tension, viscosity, thermal conductivity, heat of formation, and free energy of formation as functions of temperature ate available (213), as is a detailed discussion of the sulfur dioxide—water system (215). [Pg.143]

The physical properties of bismuth, summarized ia Table 1, are characterized by a low melting poiat, a high density, and expansion on solidification. Thermochemical and thermodynamic data are summarized ia Table 2. The soHd metal floats on the Hquid metal as ice floating on water. GaUium and antimony are the only other metals that expand on solidification. Bismuth is the most diamagnetic of the metals, and it is a poor electrical conductor. The thermal conductivity of bismuth is lower than that of any other metal except mercury. [Pg.122]

Available data on the thermodynamic and transport properties of carbon dioxide have been reviewed and tables compiled giving specific volume, enthalpy, and entropy values for carbon dioxide at temperatures from 255 K to 1088 K and at pressures from atmospheric to 27,600 kPa (4,000 psia). Diagrams of compressibiHty factor, specific heat at constant pressure, specific heat at constant volume, specific heat ratio, velocity of sound in carbon dioxide, viscosity, and thermal conductivity have also been prepared (5). [Pg.18]

Saturation and superheat tables and a diagram to 300 bar, 580 K are given by Reynolds, W. C., Theimodynamic Propeities in S.I., Stanford Univ. pubL, 1979 (173 pp.). Saturation and superheat tables and a chart to 10,000 psia, 640 F appear in Stewart, R. B., R. T Jacobsen, et al., Theimodynamic Propeiiies of Refiigerants, ASHRAE, Atlanta, GA, 1986 (521 pp-)- For specific beat, thermal conductivity, and viscosity, see Theimophysical Propeiiies of Refiigerants, ASHRAE, 1993. The 1993 ASHRAE Handbook—Pundamentals (SI ed.) contains a thermodynamic diagram from 0.1 to 700 bar for temperatures to 600 K. [Pg.278]

For tables and a chart to 1000 psia, 560 F, see Stewart, R. B., R. T. Jacobsen, et al.. Thermodynamic Froperiies of Refrigerants, ASHRAE, Atlanta, GA, 1986 (21 pp.). For specific heat, thermal conductivity, and viscosity, see Thermophysical Froperiies of Refrigerants, ASHRAE, 1993. [Pg.318]

Extensive tables of the viscosity and thermal conductivity of air and of water or steam for various pressures and temperatures are given with the thermodynamic-property tables. The thermal conductivity and the viscosity for the saturated-liquid state are also tabulated for many fluids along with the thermodynamic-property tables earlier in this section. [Pg.362]

Processes in which solids play a rate-determining role have as their principal kinetic factors the existence of chemical potential gradients, and diffusive mass and heat transfer in materials with rigid structures. The atomic structures of the phases involved in any process and their thermodynamic stabilities have important effects on drese properties, since they result from tire distribution of electrons and ions during tire process. In metallic phases it is the diffusive and thermal capacities of the ion cores which are prevalent, the electrons determining the thermal conduction, whereas it is the ionic charge and the valencies of tire species involved in iron-metallic systems which are important in the diffusive and the electronic behaviour of these solids, especially in the case of variable valency ions, while the ions determine the rate of heat conduction. [Pg.148]

It is clear that tire rate of growdr of a reaction product depends upon two principal characteristics. The first of these is the thermodynamic properties of the phases which are involved in the reaction since these determine the driving force for the reaction. The second is the transport properties such as atomic and electron diffusion, as well as thermal conduction, all of which determine the mobilities of particles during the reaction within the product phase. [Pg.253]

Fig. 2.10. Certain high strength solids with low thermal conductivity show a loss or reduction of shear strength when loaded above the Hugoniot elastic limit. The idealized behavior of such solids upon loading is shown here. The complex, heterogeneous nature of such yield phenomena probably results in processes that are far from thermodynamic equilibrium. Fig. 2.10. Certain high strength solids with low thermal conductivity show a loss or reduction of shear strength when loaded above the Hugoniot elastic limit. The idealized behavior of such solids upon loading is shown here. The complex, heterogeneous nature of such yield phenomena probably results in processes that are far from thermodynamic equilibrium.
In this table the parameters are defined as follows Bo is the boiling number, d i is the hydraulic diameter, / is the friction factor, h is the local heat transfer coefficient, k is the thermal conductivity, Nu is the Nusselt number, Pr is the Prandtl number, q is the heat flux, v is the specific volume, X is the Martinelli parameter, Xvt is the Martinelli parameter for laminar liquid-turbulent vapor flow, Xw is the Martinelli parameter for laminar liquid-laminar vapor flow, Xq is thermodynamic equilibrium quality, z is the streamwise coordinate, fi is the viscosity, p is the density, <7 is the surface tension the subscripts are L for saturated fluid, LG for property difference between saturated vapor and saturated liquid, G for saturated vapor, sp for singlephase, and tp for two-phase. [Pg.304]

The Chemkin package deals with problems that can be stated in terms of equation of state, thermodynamic properties, and chemical kinetics, but it does not consider the effects of fluid transport. Once fluid transport is introduced it is usually necessary to model diffusive fluxes of mass, momentum, and energy, which requires knowledge of transport coefficients such as viscosity, thermal conductivity, species diffusion coefficients, and thermal diffusion coefficients. Therefore, in a software package analogous to Chemkin, we provide the capabilities for evaluating these coefficients. ... [Pg.350]

In contrast to thermodynamic properties, transport properties are classified as irreversible processes because they are always associated with the creation of entropy. The most classical example concerns thermal conductance. As a consequence of the second principle of thermodynamics, heat spontaneously moves from higher to lower temperatures. Thus the transfer of AH from temperature to T2 creates a positive amount of entropy ... [Pg.119]

Thermodynamic data (enthalpy of reaction, specific heat, thermal conductivity) for simple systems can frequently be found in date bases. Such data can also be determined by physical property estimation procedures and experimental methods. The latter is the only choice for complex multicomponent systems. [Pg.100]

At a given (low) temperature and pressure a crystalline phase of some substance is thermodynamically stable vis a vis the corresponding amorphous solid. Furthermore, because of its inherent metastability, the properties of the amorphous solid depend, to some extent, on the method by which it is prepared. Just as in the cases of other substances, H20(as) is prepared by deposition of vapor on a cold substrate. In general, the temperature of the substrate must be far below the ordinary freezing point and below any possible amorphous crystal transition point. In addition, conditions for deposition must be such that the heat of condensation is removed rapidly enough that local crystallization of the deposited material is prevented. Under practical conditions this means that, since the thermal conductivity of an amorphous solid is small at low temperature, the rate of deposition must be small. [Pg.118]

The units of q are calories per square centimeter per second and those of the thermal conductivity A are calories per centimeter per second per degree Kelvin. It is not the temperature, an intensive thermodynamic property, that is exchanged, but energy content, an extensive property. In this case, the energy density and the exchange reaction, which show similarity, are written as... [Pg.336]

Key material properties for SOFC, such as the ionic conductivity as a function of temperature, are available in refs 36—39. In addition, Todd and Young ° compiled extensive data and presented estimation methods for the calculation of diffusion coefficients, thermal conductivities, and viscosities for both pure components and mixtures of a wide variety of gases commonly encountered in SOFCs. Another excellent source of transport properties for gases and mixtures involved in a SOFC is the CHEMKIN thermodynamic database. ... [Pg.493]

The introduction of heat capacity into the relationships for thermal conductivity and the Prandtl number gives us an opportunity to make a clarification regarding these two quantities. Thermal conductivity is a true heat transport property it describes the ability of a material to transport heat via conduction. Heat capacity, on the other hand, is a thermodynamic quantity and describes the ability of a material to store heat as energy. The latter, while not technically a transport property, will nonetheless be described in this chapter for the various materials types, due in part to its theoretical relationship to thermal conductivity, as given by Eq. (4.35) and (4.36), and, more practically, because it is often used in combination with thermal conductivity as a design parameter in materials selection. [Pg.318]

In addition to the temperature dependence of the properties such as strength and modulus, which we will discuss individually for each material class, there are two fundamental topics that are often described in the context of heat transfer properties or thermodynamics of materials—for example, thermal conductivity or specific heat—but are related more to mechanical properties because they involve dimensional changes. These two properties, thermoelasticity and thermal expansion, are closely related, but will be described separately. [Pg.406]

The physical properties of solvents greatly influence the choice of solvent for a particular application. The solvent should be liquid under the temperature and pressure conditions at which it is employed. Its thermodynamic properties, such as the density and vapor pressure, temperature and pressure coefficients, as well as the heat capacity and surface tension, and transport properties, such as viscosity, diffusion coefficient, and thermal conductivity, also need to be considered. Electrical, optical, and magnetic properties, such as the dipole moment, dielectric constant, refractive index, magnetic susceptibility, and electrical conductance are relevant, too. Furthermore, molecular... [Pg.51]

Homogeneous Liquids. The physical properties important in determining the suitability of a liquid for propellant application are the freezing point, vapor pressure, density, and viscosity. To a lesser extent, other physical properties are important such as the critical temperature and pressure, thermal conductivity, ability to dissolve nitrogen or helium (since gas pressurization is frequently used to expel propellants) and electrical conductivity. Also required are certain thermodynamic properties such as the heat of formation and the heat capacity of the material. The heat of formation is required for performing theoretical calculations on the candidate, and the heat capacity is desired for calculations related to regenerative cooling needs. [Pg.356]


See other pages where Thermodynamics thermal conductivity is mentioned: [Pg.411]    [Pg.470]    [Pg.38]    [Pg.64]    [Pg.324]    [Pg.249]    [Pg.261]    [Pg.285]    [Pg.339]    [Pg.8]    [Pg.190]    [Pg.17]    [Pg.165]    [Pg.883]    [Pg.163]    [Pg.10]    [Pg.10]    [Pg.151]    [Pg.64]    [Pg.56]   
See also in sourсe #XX -- [ Pg.18 , Pg.19 , Pg.20 , Pg.21 , Pg.22 ]




SEARCH



Thermal Thermodynamic

Thermodynamics conduction

© 2024 chempedia.info