Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics endothermic

The relative energies of the reaction intermediates are shown to be completely different. On iron, the initial step is not the hydrogenation of N2, but N2 dissociation. Compared with the adsorbed Natom state, the formation of NHads, NH2ads and NH3 are all thermodynamically endothermic. The industrial catalyst is promoted with oxides such as potassium oxides, which are thought to lower the activation energy Fe in the rate-limiting step, which is the dissociative adsorption of N2. [Pg.332]

The theory predicts high stabilities for hard acid - hard base complexes, mainly resulting from electrostatic interactions and for soft acid - soft base complexes, where covalent bonding is also important Hard acid - soft base and hard base - soft acid complexes usually have low stability. Unfortunately, in a quantitative sense, the predictive value of the HSAB theory is limited. Thermodynamic analysis clearly shows a difference between hard-hard interactions and soft-soft interactions. In water hard-hard interactions are usually endothermic and occur only as a result of a gain in entropy, originating from a liberation of water molecules from the hydration shells of the... [Pg.28]

Other Technologies. As important as dehydrogenation of ethylbenzene is in the production of styrene, it suffers from two theoretical disadvantages it is endothermic and is limited by thermodynamic equiHbrium. The endothermicity requites heat input at high temperature, which is difficult. The thermodynamic limitation necessitates the separation of the unreacted ethylbenzene from styrene, which are close-boiling compounds. The obvious solution is to effect the reaction oxidatively ... [Pg.484]

Dehydrogenation of /i-Butane. Dehydrogenation of / -butane [106-97-8] via the Houdry process is carried out under partial vacuum, 35—75 kPa (5—11 psi), at about 535—650°C with a fixed-bed catalyst. The catalyst consists of aluminum oxide and chromium oxide as the principal components. The reaction is endothermic and the cycle life of the catalyst is about 10 minutes because of coke buildup. Several parallel reactors are needed in the plant to allow for continuous operation with catalyst regeneration. Thermodynamics limits the conversion to about 30—40% and the ultimate yield is 60—65 wt % (233). [Pg.347]

Dichlorine monoxide is the anhydride of hypochlorous acid the two nonpolar compounds are readily interconvertible in the gas or aqueous phases via the equilibrium CI2 O + H2 0 2H0Cl. Like other chlorine oxides, CI2O has an endothermic heat of formation and is thus thermodynamically unstable with respect to decomposition into chlorine and oxygen. Dichlorine monoxide typifies the chlorine oxides as a highly reactive and explosive compound with strong oxidhing properties. Nevertheless, it can be handled safely with proper precautions. [Pg.464]

Most chemical reactions are exothermic. In the few endothermic reactions that are known, heat is absorbed into the reaction product or products, which are known as endothermic or energy-rich compounds. Such compounds are thermodynamically unstable because heat woiild be released on decomposition of their elements. The majority of endothermic compounds possess a tendency toward insta-bihty and possibly explosive decomposition under various circumstances of initiation. [Pg.2313]

The endothermic radical lO has also been studied in the gas phase the interatomic distance is 186.7 pm and the bond dissociation energy 175 20kJmol . It thus appears that, although the higher oxides of iodine are much more stable than any oxide of Cl or Br, nevertheless, lO is much less stable than CIO (p. 849) or BrO (p. 851). Its enthalpy of formation and other thermodynamic properties are A//f(298K) 175.1 kJmol", AGf(298 K) 149.8 kJmol-, 5°(298 K) 245.5 J K- mor . [Pg.853]

In addition to molecular geometry, the most important quantity to come out of molecular modeling is the energy. Energy can be used to reveal which of several isomers is most stable, to determine whether a particular chemical reaction will have a thermodynamic driving force (an exothermic reaction) or be thermodynamically uphill (an endothermic reaction), and to ascertain how fast a reaction is likely to proceed. Other molecular properties, such as the dipole moment, are also important, but the energy plays a special role. [Pg.13]

A negative AE indicates an exothermic (thermodynamically favorable) reaction, while a positive AE an endothermic (thermodynamically unfavorable) reaction. [Pg.13]

In the case of monotropic behavior, the isotropiza-tion endotherm and the corresponding thermodynamic parameters for the mesophase-isotropic transition can be obtained by isolating the mesophase when cooling from the melt and holding the temperature in a region where the transformation into the crystal is very slow... [Pg.385]

Reactions 1 and 3 are highly exothermic and therefore have equilibrium constants that decrease rapidly with temperature. Reaction 2 is moderately exothermic, and consequently its equilibrium constant shows a moderate decrease with temperature. Reaction 4 is moderately endothermic, and its equilibrium constant increases with increasing temperature. The relationship between temperature and equilibrium constant for these four reactions is depicted in Figure 1 where carbon is assumed to be graphite. Thermodynamic data were taken from Refs. 1 and 2. [Pg.41]

Estimate the temperature at which it is thermodynamically possible for carbon to reduce iron(III) oxide to iron under standard conditions by the endothermic reaction... [Pg.421]

Mass spectrometric studies yield principally three types of information useful to the radiation chemist the major primary ions one should be concerned with, their reactions with neutral molecules, and thermodynamic information which allows one to eliminate certain reactions on the basis of endothermicity. In addition, attempts at theoretical interpretations of mass spectral fragmentation patterns permit estimates of unimolecular dissociation constants for excited parent ions. [Pg.255]

It should be born in mind, however, that the activation parameters calculated refer to the sum of several reactions, whose enthalpy and/or entropy changes may have different signs from those of the decrystalUzation proper. Specifically, the contribution to the activation parameters of the interactions that occur in the solvent system should be taken into account. Consider the energetics of association of the solvated ions with the AGU. We may employ the extra-thermodynamic quantities of transfer of single ions from aprotic to protic solvents as a model for the reaction under consideration. This use is appropriate because recent measurements (using solvatochromic indicators) have indicated that the polarity at the surface of cellulose is akin to that of aliphatic alcohols [99]. Single-ion enthalpies of transfer indicate that Li+ is more efficiently solvated by DMAc than by alcohols, hence by cellulose. That is, the equilibrium shown in Eq. 7 is endothermic ... [Pg.123]

Experimental studies, combined with thermodynamic analysis, indicate that the CTA hydropurification process is a complex reaction system including both parallel and tandem reactions wherein 4-CBA hydrogenation is exothermic and its paralleled decarbonylation is endothermic. [Pg.296]

Both these everyday processes are spontaneous, but whereas one process is endothermic, the other is exothermic. The energy and enthalpy of the system increase in one process, but these quantities decrease in the other process. This simple example demonstrates that analyzing energy changes and enthalpy changes is not enough to predict whether a process will occur spontaneously. We need a property other than energy and enthalpy if we hope to use thermodynamics to determine when a process will be spontaneous. [Pg.978]

We see that the total change in entropy is a positive quantity for both these spontaneous processes, even though one process is exothermic and the other is endothermic. When this type of calculation is carried out for other processes, the same result is always obtained. For any spontaneous process, the total change of entropy is a positive quantity. Thus, this new state function of entropy provides a thermod3mamic criterion for spontaneity, which is summarized in the second law of thermodynamics ... [Pg.985]

Ozone is a highly endothermic substance. Its enthalpy of formation reaches 2.96 KJ/g, which makes it very unstable thermodynamically by CHETAH criterion Ci. In the liquid or solid state, it detonates spontaneously. [Pg.170]


See other pages where Thermodynamics endothermic is mentioned: [Pg.187]    [Pg.169]    [Pg.63]    [Pg.21]    [Pg.187]    [Pg.169]    [Pg.63]    [Pg.21]    [Pg.157]    [Pg.416]    [Pg.348]    [Pg.481]    [Pg.178]    [Pg.331]    [Pg.2411]    [Pg.25]    [Pg.317]    [Pg.228]    [Pg.180]    [Pg.298]    [Pg.388]    [Pg.256]    [Pg.124]    [Pg.118]    [Pg.55]    [Pg.421]    [Pg.817]    [Pg.339]    [Pg.228]    [Pg.30]    [Pg.365]    [Pg.12]    [Pg.24]    [Pg.184]    [Pg.189]    [Pg.356]    [Pg.97]   
See also in sourсe #XX -- [ Pg.362 , Pg.367 , Pg.374 , Pg.393 , Pg.503 ]




SEARCH



Endothermic reaction, polymer thermodynamics

Endothermicities

Endothermicity

Endotherms

© 2024 chempedia.info