Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic properties heat capacities

Of the two kinds of data needed for evaluation of thermodynamic properties, heat capacities and PVT data, the latter are most frequently missing. Fortunately, the generalized methods developed in Sec. 3.6 for the compressibility factor are also applicable to residual properties. [Pg.104]

General Sources of Data for Tables on the Physical Properties, Heat Capacities, and Thermodynamic Properties in Appendices D, E, and F... [Pg.667]

This series of books contains thermodynamic data (heat capacities, formation properties, thermal functions, vapor pressures, and many other properties) for the actinide elements and their compounds. In addition to extensive tables of data there is also a discussion of the sources from which the data have been taken and the calculations performed. Parts 2 and 3 contain data on the aqueous ions of the actinide elements. To date, the parts which have been published are ... [Pg.785]

The purpose of this chapter, in a book about transport properties, is to give advice to the reader on the best methods for converting the data, which are usually measured as a function of P and T, to a function of p and T, which is the form required for the correlating equations and, in addition, to provide sources for values of the ideal-gas isobaric heat capacities, which are also required for the transport-property calculations. Both of these purposes can be fulfilled by calculations from a single equation of state which has been fitted to the whole thermodynamic surface. Heat capacities of the real fluid are required only for the calculation of the critical enhancement of the thermal conductivity and viscosity, as described in Chapter 6 discussion of these properties in this chapter will be restricted to Section 8.4.4. [Pg.165]

Among various thermodynamic measurements heat capacity calorimetry is an extremely useful tool with which to investigate thermal properties of liquid crystals [1,2]. The heat capacity is usually measured under constant pressure and designated as Cp. It is defined as the enthalpy, H, required to raise the temperature of one mole of a given substance by 1 K. From this definition, Cp = (5H/5T)p, the enthalpy increment is determined by integration of Cp with respect to temperature, that is... [Pg.116]

Investigations to find such additive constituent properties of molecules go back to the 1920s and 1930s with work by Fajans [6] and others. In the 1940s and 1950s lhe focus had shifted to the estimation of thermodynamic properties of molecules such as heat of formation, AHf, entropy S°, and heat capacity, C°. [Pg.321]

The thermodynamic properties that we have considered so far, such as the internal energy, the pressure and the heat capacity are collectively known as the mechanical properties and can be routinely obtained from a Monte Carlo or molecular dynamics simulation. Other thermodynamic properties are difficult to determine accurately without resorting to special techniques. These are the so-called entropic or thermal properties the free energy, the chemical potential and the entropy itself. The difference between the mechanical emd thermal properties is that the mechanical properties are related to the derivative of the partition function whereas the thermal properties are directly related to the partition function itself. To illustrate the difference between these two classes of properties, let us consider the internal energy, U, and the Fielmholtz free energy, A. These are related to the partition function by ... [Pg.327]

The heat capacity of thiazole was determined by adiabatic calorimetry from 5 to 340 K by Goursot and Westrum (295,296). A glass-type transition occurs between 145 and 175°K. Melting occurs at 239.53°K (-33-62°C) with an enthalpy increment of 2292 cal mole and an entropy increment of 9-57 cal mole °K . Table 1-44 summarizes the variations as a function of temperature of the most important thermodynamic properties of thiazole molar heat capacity Cp, standard entropy S°, and Gibbs function - G°-H" )IT. [Pg.86]

Thermal Properties and Enduranee. The heat capacity or specific heat, is a quantity of theoretical thermodynamic significance as well as of practical importance. It has been determined for Parylene N over the temperature range of 220 to 620 K (—53 to +347° C) (24,29). [Pg.435]

The common physical properties of acetyl chloride ate given in Table 1. The vapor pressure has been measured (2,7), but the experimental difficulties ate considerable. An equation has been worked out to represent the heat capacity (8), and the thermodynamic ideal gas properties have been conveniently organized (9). [Pg.81]

Physical Properties. Sulfur dioxide [7446-09-5] SO2, is a colorless gas with a characteristic pungent, choking odor. Its physical and thermodynamic properties ate Hsted in Table 8. Heat capacity, vapor pressure, heat of vaporization, density, surface tension, viscosity, thermal conductivity, heat of formation, and free energy of formation as functions of temperature ate available (213), as is a detailed discussion of the sulfur dioxide—water system (215). [Pg.143]

Equations 80, 81, 95, and 96 are basic to the calculation of numerical values for the thermodynamic properties U, H, and S from experimental heat capacity and PV T data. [Pg.489]

Thermodynamic and physical properties of water vapor, Hquid water, and ice I are given ia Tables 3—5. The extremely high heat of vaporization, relatively low heat of fusion, and the unusual values of the other thermodynamic properties, including melting poiat, boiling poiat, and heat capacity, can be explained by the presence of hydrogen bonding (2,7). [Pg.209]

Values for the free energy and enthalpy of formation, entropy, and ideal gas heat capacity of carbon monoxide as a function of temperature are listed in Table 2 (1). Thermodynamic properties have been reported from 70—300 K at pressures from 0.1—30 MPa (1—300 atm) (8,9) and from 0.1—120 MPa (1—1200 atm) (10). [Pg.48]

In the broadest sense, thermodynamics is concerned with mathematical relationships that describe equiUbrium conditions as well as transformations of energy from one form to another. Many chemical properties and parameters of engineering significance have origins in the mathematical expressions of the first and second laws and accompanying definitions. Particularly important are those fundamental equations which connect thermodynamic state functions to real-world, measurable properties such as pressure, volume, temperature, and heat capacity (1 3) (see also Thermodynamic properties). [Pg.232]

Hea.t Ca.pa.cities. The heat capacities of real gases are functions of temperature and pressure, and this functionaHty must be known to calculate other thermodynamic properties such as internal energy and enthalpy. The heat capacity in the ideal-gas state is different for each gas. Constant pressure heat capacities, (U, for the ideal-gas state are independent of pressure and depend only on temperature. An accurate temperature correlation is often an empirical equation of the form ... [Pg.235]

The most satisfactory calciilational procedure for thermodynamic properties of gases and vapors requires PVT data and ideal gas heat capacities. The primary equations are based on the concept of the ideal gas state and the definitions of residual enthalpy anci residual entropy ... [Pg.524]

It is reasonable to expeet that models in ehemistry should be capable of giving thermodynamic quantities to chemical accuracy. In this text, the phrase thermodynamic quantities means enthalpy changes A//, internal energy changes AU, heat capacities C, and so on, for gas-phase reactions. Where necessary, the gases are assumed ideal. The calculation of equilibrium constants and transport properties is also of great interest, but I don t have the space to deal with them in this text. Also, the term chemical accuracy means that we should be able to calculate the usual thermodynamic quantities to the same accuracy that an experimentalist would measure them ( 10kJmol ). [Pg.319]

The thermodynamic properties of thiophene,2-methylthiophene, ° and 3-methylthiophene have been computed from careful measurements of the heat capacity of the solid, liquid, and vapor states, the heat of fusion, the heat of vaporization, and the heat of combustion. From the heat of combustion of thiophene and from thermochemical bond energies, the resonance energy of thiophene has been re-estimated to be only 20 kcal/mole. [Pg.19]

The form of equations (8.11) and (8.12) turns out to be general for properties near a critical point. In the vicinity of this point, the value of many thermodynamic properties at T becomes proportional to some power of (Tc - T). The exponents which appear in equations such as (8.11) and (8.12) are referred to as critical exponents. The exponent 6 = 0.32 0.01 describes the temperature behavior of molar volume and density as well as other properties, while other properties such as heat capacity and isothermal compressibility are described by other critical exponents. A significant scientific achievement of the 20th century was the observation of the nonanalytic behavior of thermodynamic properties near the critical point and the recognition that the various critical exponents are related to one another ... [Pg.395]

Statistical thermodynamics provides the relationships that we need in order to bridge this gap between the macro and the micro. Our most important application will involve the calculation of the thermodynamic properties of the ideal gas, but we will also apply the techniques to solids. The procedure will involve calculating U — Uo, the internal energy above zero Kelvin, from the energy of the individual molecules. Enthalpy differences and heat capacities are then easily calculated from the internal energy. Boltzmann s equation... [Pg.497]

The thermodynamic properties can be calculated from Zm, f using the equations derived earlier. For example, the contribution to the heat capacity can be shown to be 5 R. [Pg.567]

One of the first attempts to calculate the thermodynamic properties of an atomic solid assumed that the solid consists of an array of spheres occupying the lattice points in the crystal. Each atom is rattling around in a hole at the lattice site. Adding energy (usually as heat) increases the motion of the atom, giving it more kinetic energy. The heat capacity, which we know is a measure of the ability of the solid to absorb this heat, varies with temperature and with the substance.8 Figure 10.11, for example, shows how the heat capacity Cy.m for the atomic solids Ag and C(diamond) vary with temperature.dd ee The heat capacity starts at a value of zero at zero Kelvin, then increases rapidly with temperature, and levels out at a value of 3R (24.94 J-K -mol-1). The... [Pg.569]

A number of other thermodynamic properties of adamantane and diamantane in different phases are reported by Kabo et al. [5]. They include (1) standard molar thermodynamic functions for adamantane in the ideal gas state as calculated by statistical thermodynamics methods and (2) temperature dependence of the heat capacities of adamantane in the condensed state between 340 and 600 K as measured by a scanning calorimeter and reported here in Fig. 8. According to this figure, liquid adamantane converts to a solid plastic with simple cubic crystal structure upon freezing. After further cooling it moves into another solid state, an fee crystalline phase. [Pg.214]

Quantitative estimates of E are obtained the same way as for the collision theory, from measurements, or from quantum mechanical calculations, or by comparison with known systems. Quantitative estimates of the A factor require the use of statistical mechanics, the subject that provides the link between thermodynamic properties, such as heat capacities and entropy, and molecular properties (bond lengths, vibrational frequencies, etc.). The transition state theory was originally formulated using statistical mechanics. The following treatment of this advanced subject indicates how such estimates of rate constants are made. For more detailed discussion, see Steinfeld et al. (1989). [Pg.143]

Several material properties exhibit a distinct change over the range of Tg. These properties can be classified into three major categories—thermodynamic quantities (i.e., enthalpy, heat capacity, volume, and thermal expansion coefficient), molecular dynamics quantities (i.e., rotational and translational mobility), and physicochemical properties (i.e., viscosity, viscoelastic proprieties, dielectric constant). Figure 34 schematically illustrates changes in selected material properties (free volume, thermal expansion coefficient, enthalpy, heat capacity, viscosity, and dielectric constant) as functions of temperature over the range of Tg. A number of analytical methods can be used to monitor these and other property changes and... [Pg.72]


See other pages where Thermodynamic properties heat capacities is mentioned: [Pg.192]    [Pg.192]    [Pg.10]    [Pg.164]    [Pg.1904]    [Pg.1904]    [Pg.304]    [Pg.414]    [Pg.470]    [Pg.64]    [Pg.248]    [Pg.216]    [Pg.496]    [Pg.592]    [Pg.656]    [Pg.661]    [Pg.662]    [Pg.663]    [Pg.30]    [Pg.159]    [Pg.79]    [Pg.282]    [Pg.9]    [Pg.21]   
See also in sourсe #XX -- [ Pg.9 , Pg.16 , Pg.25 ]




SEARCH



Estimating Temperature Effects on Heat Capacity and Other Thermodynamic Properties

Heat properties

Thermodynamic properties Heat capacity, etc

Thermodynamic properties heat capacity data

© 2024 chempedia.info