Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic model, nonequilibrium

Building of the adequate model (nonequilibrium thermodynamic approach, polymeric or pseudopolymeric models, fractal analysis, combinations of various methods, etc.). [Pg.36]

The thermodynamic approach considers micropores as elements of the structure of the system possessing excess (free) energy, hence, micropore formation processes are described in general terms of nonequilibrium thermodynamics, if no kinetic limitations appear. The applicability of the thermodynamic approach to description of micropore formation is very large, because this one is, in most cases, the result of fast chemical reactions and related heat/mass transfer processes. The thermodynamic description does not contradict to the fractal one because of reasons which are analyzed below in Sec. II. C but the nonequilibrium thermodynamic models are, in most cases, more strict and complete than the fractal ones, and the application of the fractal approach furnishes no additional information. If no polymerization takes place (that is right for most of processes of preparation of active carbons at high temperatures by pyrolysis or oxidation of primary organic materials), traditional methods of nonequilibrium thermodynamics (especially nonequilibrium statistical thermodynamics) are applicable. [Pg.38]

Enzyme-catalyzed reactions, including the electron transport chain and proton translocation, are composed of series of elementary reactions that proceed forward and backward. One of the methods in describing this thermodynamically and mathematically coupled complex chemical reaction-transport system is the nonequilibrium thermodynamic model, which does not require the detailed knowledge of the system. [Pg.470]

Nonequilibrium Thermodynamics Model of a Calcium Pump with Slips... [Pg.575]

Waldeck et al. (1998a, 1998b) presented a nonequilibrium thermodynamics model for the calcium pump shown in Figure 11.4. This section summarizes this model. During the hydrolysis of ATP, a variation of the coupling stoichiometries with the electrochemical gradients is an indication of molecular slips. However, the Ca2+and H+membrane-leak... [Pg.575]

Ca2+-ATPases exist in the plasma membranes of most cells and in the sarcoplasmic reticulum of myocytes, where they pump Ca2+out of the cytosol and into the lumen, respectively, while simultaneously counterporting H+ions. Ca2+-ATPase requires Mg2+on the side from which Ca2+is pumped. It is generally established that the Ca2+/ATP stoichiometries for the plasma membrane and sarcoplasmic reticulum are 1 and 2, respectively. Using a nonequilibrium thermodynamics model, the extent of slippage in the plasma membrane Ca2+-ATPase can be estimated from steady-state H+flow measurements. [Pg.576]

Another attempt to overcome the phenomenological character of nonequilibrium thermodynamics is called mosaic nonequilibrium thermodynamics. In the formulation of mosaic nonequilibrium thermodynamics, a complex system is considered a mosaic of a number of independent building blocks. The species and each process are separately described and hence the biochemical and biophysical structures of the system are included in the description. The mosaic nonequilibrium thermodynamics model can be expanded to complex physical and biological systems by adding the well-characterized steps. These steps obey the thermodynamic laws and kinetic principles. [Pg.678]

Another very important feature of the stochastic equations considered here, when they are subjected to RMT analysis, is their resemblance to the general formalism arrived at in the thermodynamics of nonequilibrium processes this suggests an analogy between the effects of multiplicative noise and the continuous flux of energy which maintains the systems far from equilibrium. This is considered the main characteristic of self-organizing living systems and means that multiplicative stochastic models could take on a new and fundamentally important role. [Pg.478]

Gorak and Vogelpohl (1985) present an experimental study of ternary distillation in a packed column. The system used was methanol(l)-2-propanol(2)-water(3) and the column was 0.1 m wide and filled with Sulzer CY packing. Use the nonequilibrium model to simulate their experiments. Investigate the sensitivity of the simulation results to the thermodynamic model parameters. Write an article in the format required by Separation Science Technology that summarizes your calculations. [Pg.503]

In equilibrium thermodynamics model A and in model B not far from equilibrium (and with no memory to temperature) the entropy may be calculated up to a constant. Namely, in both cases S = S(V, T) (2.6)2, (2.25) and we can use the equilibrium processes (2.28) in B or arbitrary processes in A for classical calculation of entropy change by integration of dS/dT or dS/dV expressible by Gibbs equations (2.18), (2.19), (2.38) through measurable heat capacity dU/dT or state Eqs.(2.6>, (2.33) (with equilibrium pressure P° in model B). This seems to accord with such a property as in (1.11), (1.40) in Sects. 1.3, 1.4. As we noted above, here the Gibbs equations used were proved to be valid not only in classical equilibrium thermodynamics (2.18), (2.19) but also in the nonequilibrium model B (2.38) and this expresses the local equilibrium hypothesis in model B (it will be proved also in nonuniform models in Chaps.3 (Sect. 3.6), 4, while in classical theories of irreversible processes [12, 16] it must be taken as a postulate). [Pg.50]

Nonequilibrium thermodynamics model of a calcium pump with slips... [Pg.541]

As mentioned before, nonequilibrium thermodynamics could be used to study the entropy generated by an irreversible process (Prigogine, 1945, 1947). The concept ofhnear nonequilibrium thermodynamics is that when the system is close to equilibrium, the hnear relationship can be obtained between the flux and the driving force (Demirel and Sandler, 2004 Lu et al, 2011). Based on our previous linear nonequihbrium thermodynamic studies on the dissolution and crystallization kinetics of potassium inorganic compounds (Ji et al, 2010 Liu et al, 2009 Lu et al, 2011), the nonequihbrium thermodynamic model of CO2 absorption and desorption kinetics by ILs could be studied. Figure 17 shows the schematic diagram of CO2 absorption kinetic process by ILs. In our work, the surface reaction mass transport rate and diffusion mass transport rate were described using the Hnear nonequihbrium thermodynamic theory. [Pg.118]

A thermodynamic model was recently proposed to calculate the solubility of small molecules in assy polymers. This model is based on the assumption that the densiQr of the polymer matrix can be considered as a proper order parameter for the nonequilibrium state of the system (7). In this chapter, the fundamental principles of the model are reviewed and the relation of the model to the rheological properties of the polymeric matrix is developed. In particular, a unique relation between the equilibrium and non-equilibrium properties of the polymer-penetrant mixture can be obtained on the basis of a simple model for the stress-strain relationship. [Pg.180]

In this review we put less emphasis on the physics and chemistry of surface processes, for which we refer the reader to recent reviews of adsorption-desorption kinetics which are contained in two books [2,3] with chapters by the present authors where further references to earher work can be found. These articles also discuss relevant experimental techniques employed in the study of surface kinetics and appropriate methods of data analysis. Here we give details of how to set up models under basically two different kinetic conditions, namely (/) when the adsorbate remains in quasi-equihbrium during the relevant processes, in which case nonequilibrium thermodynamics provides the needed framework, and (n) when surface nonequilibrium effects become important and nonequilibrium statistical mechanics becomes the appropriate vehicle. For both approaches we will restrict ourselves to systems for which appropriate lattice gas models can be set up. Further associated theoretical reviews are by Lombardo and Bell [4] with emphasis on Monte Carlo simulations, by Brivio and Grimley [5] on dynamics, and by Persson [6] on the lattice gas model. [Pg.440]

A generalized model of transport allowing for component interactions is provided by nonequilibrium thermodynamics where the flux of component i through the membrane /, [gmol/(cm -s)] is written as a first-order perturbation of the chemical potential dp,/dx [cal/(gmohcm)] ... [Pg.39]

The convective diffusion equations presented above have been used to model tablet dissolution in flowing fluids and the penetration of targeted macro-molecular drugs into solid tumors [5], In comparison with the nonequilibrium thermodynamics approach described below, the convective diffusion equations have the advantage of theoretical rigor. However, their mathematical complexity dictates a numerical solution in all but the simplest cases. [Pg.33]

In the pharmaceutical sciences, the nonequilibrium thermodynamics approach has been particularly important in the design of osmotic drug delivery devices, as discussed in Chapter 11. It has also been used to describe the convective transport of a binding antibody in an in vitro model of a solid tumor [8], As our appreciation of the roles of convection and osmosis in drug delivery increases, the nonequilibrium thermodynamics approach may find wider appeal. [Pg.34]

Instead of the quantity given by Eq. (15), the quantity given by Eq. (10) was treated as the activation energy of the process in the earlier papers on the quantum mechanical theory of electron transfer reactions. This difference between the results of the quantum mechanical theory of radiationless transitions and those obtained by the methods of nonequilibrium thermodynamics has also been noted in Ref. 9. The results of the quantum mechanical theory were obtained in the harmonic oscillator model, and Eqs. (9) and (10) are valid only if the vibrations of the oscillators are classical and their frequencies are unchanged in the course of the electron transition (i.e., (o k = w[). It might seem that, in this case, the energy of the transition and the free energy of the transition are equal to each other. However, we have to remember that for the solvent, the oscillators are the effective ones and the parameters of the system Hamiltonian related to the dielectric properties of the medium depend on the temperature. Therefore, the problem of the relationship between the results obtained by the two methods mentioned above deserves to be discussed. [Pg.104]

Solvation Thermodynamics and the Treatment of Equilibrium and Nonequilibrium Solvation Effects by Models Based on Collective Solvent Coordinates... [Pg.63]


See other pages where Thermodynamic model, nonequilibrium is mentioned: [Pg.167]    [Pg.48]    [Pg.98]    [Pg.676]    [Pg.679]    [Pg.45]    [Pg.2]    [Pg.541]    [Pg.644]    [Pg.649]    [Pg.619]    [Pg.98]    [Pg.676]    [Pg.679]    [Pg.343]    [Pg.358]    [Pg.99]    [Pg.185]    [Pg.648]    [Pg.287]    [Pg.252]    [Pg.87]    [Pg.237]    [Pg.79]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



Models nonequilibrium

Nonequilibrium

Nonequilibrium Modeling

Nonequilibrium thermodynamics

Thermodynamic model

Thermodynamic modelings

Thermodynamics modeling

© 2024 chempedia.info