Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic catalysis

Along with thermodynamics, catalysis is one of the core technologies for an economically interesting use of C02 as feedstock in chemical processes. This is one of the areas most... [Pg.106]

It is important to note that systems that demonstrate strong "thermodynamic catalysis do not necessarily give rise to significant "intrinsic catalysis (even though the converse is usually expected to be true). This is because the former only requires that a surface bond is formed with a... [Pg.28]

Although the presence of merely thermodynamic, rather than additional intrinsic, inner-sphere catalysis can yield substantial rate enhancements, these will be limited inevitably by the availability of surface coordination sites. Thus, for example, a bulk reactant concentration of ImM and a maximum (i.e. monolayer) surface concentration of 5 x 10 10mol cm-2 yields a maximum rate enhancement of 5 x 104 fold resulting from "thermodynamic catalysis if Sr = 1 A for the alternative outer-sphere pathway. Greater inner-sphere rate accelerations require pathways yielding increases in /ce) or decreases in AG. ... [Pg.48]

The physical chemist is very interested in kinetics—in the mechanisms of chemical reactions, the rates of adsorption, dissolution or evaporation, and generally, in time as a variable. As may be imagined, there is a wide spectrum of rate phenomena and in the sophistication achieved in dealing wifli them. In some cases changes in area or in amounts of phases are involved, as in rates of evaporation, condensation, dissolution, precipitation, flocculation, and adsorption and desorption. In other cases surface composition is changing as with reaction in monolayers. The field of catalysis is focused largely on the study of surface reaction mechanisms. Thus, throughout this book, the kinetic aspects of interfacial phenomena are discussed in concert with the associated thermodynamic properties. [Pg.2]

Unfortunately, the number of mechanistic studies in this field stands in no proportion to its versatility" . Thermodynamic analysis revealed that the beneficial effect of Lewis-acids on the rate of the Diels-Alder reaction can be primarily ascribed to a reduction of the enthalpy of activation ( AAH = 30-50 kJ/mole) leaving the activation entropy essentially unchanged (TAAS = 0-10 kJ/mol)" . Solvent effects on Lewis-acid catalysed Diels-Alder reactions have received very little attention. A change in solvent affects mainly the coordination step rather than the actual Diels-Alder reaction. Donating solvents severely impede catalysis . This observation justifies the widespread use of inert solvents such as dichloromethane and chloroform for synthetic applications of Lewis-acid catalysed Diels-Alder reactions. [Pg.13]

Catalysis (qv) refers to a process by which a substance (the catalyst) accelerates an otherwise thermodynamically favored but kiaeticahy slow reaction and the catalyst is fully regenerated at the end of each catalytic cycle (1). When photons are also impHcated in the process, photocatalysis is defined without the implication of some special or specific mechanism as the acceleration of the prate of a photoreaction by the presence of a catalyst. The catalyst may accelerate the photoreaction by interaction with a substrate either in its ground state or in its excited state and/or with the primary photoproduct, depending on the mechanism of the photoreaction (2). Therefore, the nondescriptive term photocatalysis is a general label to indicate that light and some substance, the catalyst or the initiator, are necessary entities to influence a reaction (3,4). The process must be shown to be truly catalytic by some acceptable and attainable parameter. Reaction 1, in which the titanium dioxide serves as a catalyst, may be taken as both a photocatalytic oxidation and a photocatalytic dehydrogenation (5). [Pg.398]

Many, but not all, reactor configurations are discussed. Process design, catalyst manufacture, thermodynamics, design of experiments (qv), and process economics, as well as separations, the technologies of which often are appHcable to reactor technology, are discussed elsewhere in the Eniyclopedia (see Catalysis Separation Thermodynamics). [Pg.504]

C, 0.356—1.069 m H2/L (2000—6000 fU/bbl) of Hquid feed, and a space velocity (wt feed per wt catalyst) of 1—5 h. Operation of reformers at low pressure, high temperature, and low hydrogen recycle rates favors the kinetics and the thermodynamics for aromatics production and reduces operating costs. However, all three of these factors, which tend to increase coking, increase the deactivation rate of the catalyst therefore, operating conditions are a compromise. More detailed treatment of the catalysis and chemistry of catalytic reforming is available (33—35). Typical reformate compositions are shown in Table 6. [Pg.179]

Enzymatic Catalysis. Enzymes are biological catalysts. They increase the rate of a chemical reaction without undergoing permanent change and without affecting the reaction equiUbrium. The thermodynamic approach to the study of a chemical reaction calculates the equiUbrium concentrations using the thermodynamic properties of the substrates and products. This approach gives no information about the rate at which the equiUbrium is reached. The kinetic approach is concerned with the reaction rates and the factors that determine these, eg, pH, temperature, and presence of a catalyst. Therefore, the kinetic approach is essentially an experimental investigation. [Pg.286]

According to a kinetic study which included (56), (56a) and some oxaziridines derived from aliphatic aldehydes, hydrolysis follows exactly first order kinetics in 4M HCIO4. Proton catalysis was observed, and there is a linear correlation with Hammett s Ho function. Since only protonated molecules are hydrolyzed, basicities of oxaziridines ranging from pii A = +0.13 to -1.81 were found from the acidity rate profile. Hydrolysis rates were 1.49X 10 min for (56) and 43.4x 10 min for (56a) (7UCS(B)778). O-Protonation is assumed to occur, followed by polar C—O bond cleavage. The question of the place of protonation is independent of the predominant IV-protonation observed spectroscopically under equilibrium conditions all protonated species are thermodynamically equivalent. [Pg.207]

The applications of quantitative structure-reactivity analysis to cyclodextrin com-plexation and cyclodextrin catalysis, mostly from our laboratories, as well as the experimental and theoretical backgrounds of these approaches, are reviewed. These approaches enable us to separate several intermolecular interactions, acting simultaneously, from one another in terms of physicochemical parameters, to evaluate the extent to which each interaction contributes, and to predict thermodynamic stabilities and/or kinetic rate constants experimentally undetermined. Conclusions obtained are mostly consistent with those deduced from experimental measurements. [Pg.62]

Henry Eyring s research has been original and frequently unorthodox. He woj one of the first chemists to apply quantum mechanics in chemistry. He unleashed a revolution in the treatment of reaction rates by use of detailed thermodynamic reasoning. Having formulated the idea of the activated complex, Eyring proceeded to find a myriad of fruitful applications—to viscous flow of liquids, to diffusion in liquids, to conductance, to adsorption, to catalysis. [Pg.141]

The two main conditions (besides the stability of the a radical towards the solvent to observe such an electron catalysis are a sufficient high rate of addition of the nucleophile and the thermodynamic inequality E°ll >E°12 implying a fast displacement of the latter equilibrium to the direction of the formation of the anion radical of 71. [Pg.1039]

For what is probably the earliest microscopic calculations of thermodynamic cycles in proteins see Ref. 12, that reported a PDLD study of the pKtt s of some groups in lysozyme. The use of FEP approaches for studies of proteins is more recent and early studies of catalysis and binding were reported in Refs. 11, 12, and 13 of Chapter 4. [Pg.186]

Wagner was first to propose the use of solid electrolytes to measure in situ the thermodynamic activity of oxygen on metal catalysts.17 This led to the technique of solid electrolyte potentiometry.18 Huggins, Mason and Giir were the first to use solid electrolyte cells to carry out electrocatalytic reactions such as NO decomposition.19,20 The use of solid electrolyte cells for chemical cogeneration , that is, for the simultaneous production of electrical power and industrial chemicals, was first demonstrated in 1980.21 The first non-Faradaic enhancement in heterogeneous catalysis was reported in 1981 for the case of ethylene epoxidation on Ag electrodes,2 3 but it was only... [Pg.7]

Wagner first proposed the use of such galvanic cells in heterogeneous catalysis, to measure in situ the thermodynamic activity of oxygen O(a) adsorbed on metal electrodes during catalytic reactions.21 This led to the technique of solid electrolyte potentiometry (SEP).22 26... [Pg.94]

I. Metcalfe, Electrochemical Promotion of Catalysis I Thermodynamic considerations, J. Catal. 199,247-258 (2001). [Pg.332]

As an approach to biomimetic catalysis, Sanders and colleagues [67] synthesized a series of 1,1,2-linked cyclic porphyrin trimers that allow the stereo- and regiochemistry of the Diels-Alder reaction of 84 and 85 within the molecular cavity to be controlled, thereby producing prevalently or exclusively the endo 86 or the exo 87 adduct. Two examples are illustrated in Scheme 4.18. At 30 °C and in the absence of 88, the reaction furnishes a mixture of diastereoisomers, while the addition of one equivalent of trimer 88 accelerates the reaction 1000-fold and the thermodynamically more stable exo adduct 87 is the sole detectable product. [Pg.172]

An irreversible reaction of the intermediate of a redox reaction will greatly facilitate redox catalysis by thermodynamic control. A good example is the reduction of the carbon halogen bond where the irreversible reaction is the cleavage of the carbon halogen bond associated, or concerted, with the first electron transfer -pEe... [Pg.67]

Thermodynamic Disequilibrium and Microbial Catalysis of Oxidation Reactions... [Pg.432]

Among the theories of limited applicability, those of heterogeneous catalysis processes have been most developed (4, 5, 48). They are based on the assumption of many active sites with different activity, the distribution of which may be either random (23) or thermodynamic (27, 28, 48). Multiple adsorption (46, 47) and tunnel effects (4, 46) also are considered. It seems, however, that there is in principle no specific feature of isokinetic behavior in heterogeneous catalysis. It is true only that the phenomenon has been discovered in this category and that it can be followed easily because of large possible changes of temperature. [Pg.462]

The pre.sent account follows a Journey in this arena from solution calorimetric studies dealing with nucleophilic carbene ligands in an organometallic system to the use of these thermodynamic data in predicting the feasibility of exchange reactions to applications in homogeneous catalysis. [Pg.183]

Membranes can be applied to catalysis in different ways. In most of the literature reports, the membrane is used on the reactor level (centimeter to meter scale) enclosing the reaction mixture (Figure 10.3). In most cases, the membrane is used as an inert permselective barrier in an equilibrium-limited reaction where at least one of the desired products is removed in situ to shift the extent of the reaction past the thermodynamic equilibrium. [Pg.214]


See other pages where Thermodynamic catalysis is mentioned: [Pg.28]    [Pg.29]    [Pg.48]    [Pg.274]    [Pg.1]    [Pg.28]    [Pg.29]    [Pg.48]    [Pg.274]    [Pg.1]    [Pg.211]    [Pg.369]    [Pg.883]    [Pg.291]    [Pg.268]    [Pg.310]    [Pg.364]    [Pg.1190]    [Pg.268]    [Pg.638]    [Pg.222]    [Pg.242]    [Pg.1016]    [Pg.1016]    [Pg.166]    [Pg.57]    [Pg.59]    [Pg.112]   
See also in sourсe #XX -- [ Pg.28 , Pg.48 ]




SEARCH



Thermodynamics catalysis

© 2024 chempedia.info