Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermocouples properties

Whereas it is no longer an iaterpolation standard of the scale, the thermoelectric principle is one of the most common ways to transduce temperature, although it is challenged ia some disciplines by small iadustrial platinum resistance thermometers (PRTs) and thermistors. Thermocouple junctions can be made very small and ia almost infinite variety, and for base metal thermocouples the component materials are very cheap. Properties of various types of working thermocouple are shown in Table 3 additional properties are given in Reference 5. [Pg.402]

Measurement of the hotness or coldness of a body or fluid is commonplace in the process industries. Temperature-measuring devices utilize systems with properties that vaiy with temperature in a simple, reproducible manner and thus can be cahbrated against known references (sometimes called secondaiy thermometers). The three dominant measurement devices used in automatic control are thermocouples, resistance thermometers, and pyrometers and are applicable over different temperature regimes. [Pg.759]

Instruments based on the contact principle can further be divided into two classes mechanical thermometers and electrical thermometers. Mechanical thermometers are based on the thermal expansion of a gas, a liquid, or a solid material. They are simple, robust, and do not normally require power to operate. Electrical resistance thermometers utilize the connection between the electrical resistance and the sensor temperature. Thermocouples are based on the phenomenon, where a temperature-dependent voltage is created in a circuit of two different metals. Semiconductor thermometers have a diode or transistor probe, or a more advanced integrated circuit, where the voltage of the semiconductor junctions is temperature dependent. All electrical meters are easy to incorporate with modern data acquisition systems. A summary of contact thermometer properties is shown in Table 12.3. [Pg.1136]

The measurement ranges for the base-metal thermocouples are 0 to +750 °C (type J), -200 to +1200 °C (type K), and -200 to +350 °C (type T). The noble-metal thermocouples can be used at higher temperatures up to 1700 °C. The dynamic response of sheathed thermocouples is not very fast however, a probe made from bare, thin wires can have very fast dynamic properties. One of the best features of thermocouples is the simplicity of making new probes by soldering or welding the ends of two wires together. [Pg.1138]

Hardness on the Mohs scale is often above 8 and sometimes approaches 10 (diamond). These properties commend nitrides for use as crucibles, high-temperature reaction vessels, thermocouple sheaths and related applications. Several metal nitrides are also used as heterogeneous catalysts, notably the iron nitrides in the Fischer-Tropsch hydriding of carbonyls. Few chemical reactions of metal nitrides have been studied the most characteristic (often extremely slow but occasionally rapid) is hydrolysis to give ammonia or nitrogen ... [Pg.418]

As examples of properties of systems satisfying the conditions of definiteness at a particular temperature and of reversion, we may refer to the electrical resistance of a metal wire the electromotive force of a thermocouple with a fixed temperature at the cold junction the volume of a homogeneous gaseous, liquid, or... [Pg.2]

Other parameters which have been used to provide a measure of a include physical dimensions (thermomechanical analysis, TMA) [126], magnetic susceptibility [178,179], light emission [180,181], reflectance spectra (dynamic reflectance spectroscopy, DRS) [182] and dielectric properties (dynamic scanning dielectrometry, DSD) [183,184], For completeness, we may make passing reference here to the extreme instances of non-isothermal behaviour which occur during self-sustained burning (studied from responses [185] of a thermocouple within the reactant) and detonation. Such behaviour is, however, beyond the scope of the present review. [Pg.23]

A TMA analyser will need to measure accurately both the temperature of the sample, and very small movements of a probe in contact with the surface of the sample. A typical analyser, as illustrated in Figure 11.20(a) and (b), uses a quartz probe containing a thermocouple for temperature measurement, and is coupled to the core of a linear variable differential transformer (LVDT). Small movements at the sample surface are transmitted to the core of the LVDT and converted into an electrical signal. In this way samples ranging from a few microns to centimetre thicknesses may be studied with sensitivity to movements of a few microns. For studying different mechanical properties the detailed construction of the probe will vary as is illustrated in Figure 11.20(c). [Pg.494]

Saito with a fine wire thermocouple embedded at the surface [3]. The scatter in the results are most likely due to the decomposition variables and the accuracy of this difficult measurement. (Note that the surface temperature here is being measured with a thermocouple bead of finite size and having properties dissimilar to wood.) Likewise the properties k. p and c cannot be expected to be equal to values found in the literature for generic common materials since temperature variations in the least will make them change. We expect k and c to increase with temperature, and c to effectively increase due to decomposition, phase change and the evaporation of absorbed water. While we are not modeling all of these effects, we can still use the effective properties of Tig, k, p and c to explain the ignition behavior. For example,... [Pg.166]

IR spectrometers have the same components as UY/visible, except the materials need to be specially selected for their transmission properties in the IR (e.g., NaCl prisms for the monochromators). The radiation source is simply an inert substance heated to about 1500 °C (e.g., the Nernst glower, which uses a cylinder composed of rare earth oxides). Detection is usually by a thermal detector, such as a simple thermocouple, or some similar device. Two-beam system instruments often work on the null principle, in which the power of the reference beam is mechanically attenuated by the gradual insertion of a wedge-shaped absorber inserted into the beam, until it matches the power in the sample beam. In a simple ( flatbed ) system with a chart recorder, the movement of the mechanical attenuator is directly linked to the chart recorder. The output spectrum is essentially a record of the degree of... [Pg.79]

As an excellent, simple example of how fluctuating parameters can affect a reacting system, one can examine how the mean rate of a reaction would differ from the rate evaluated at the mean properties when there are no correlations among these properties. In flow reactors, time-averaged concentrations and temperatures are usually measured, and then rates are determined from these quantities. Only by optical techniques or very fast response thermocouples could the proper instantaneous rate values be measured, and these would fluctuate with time. [Pg.216]

Metal Oxide-Polymer Thermistors. The variation of electrical properties with temperature heretofore described can be used to tremendous advantage. These so-called thermoelectric effects are commonly used in the operation of electronic temperature measuring devices such as thermocouples, thermistors, and resistance-temperature detectors (RTDs). A thermocouple consists of two dissimilar metals joined at one end. As one end of the thermocouple is heated or cooled, electrons diffuse toward... [Pg.594]

Pultrusion is a steady-state process in which the fiber-resin mass changes its properties as it moves from the entrance to the exit of the die. In order to track the temperature, polymer conversion, and other properties of the fiber-resin mass as it moves along the die, it is useful to define a representative volume element (RVE) that rides along the fiber at the line speed of the pultrusion process. An RVE is defined such that it will contain both the solid phase (i.e., fibers and resin), irrespective of its location in the composite. In real-life pultrusion, a thermocouple wire that passes through the pultrusion die tracks the temperature of an RVE in the composite. [Pg.61]

Perry and Lee [28,29] offer an enhancement of QPA, based upon use of dual heat flux sensors and additional thermocouples in autoclave curing. This enhancement entails determining heat transfer properties during the cure, then using these properties in conjunction with PID regulatory control of autoclave temperature. Using the additional sensors, Perry and Lee employ an on-line Damkohler number in lieu of the second time-derivative of temperature to avoid exothermic thermal runaway within the prepreg stack thermoset resin. The Damkohler number is defined as ... [Pg.277]

Heat transfer models of the autoclave process are the most accurate and well understood of all the process models. Much of this understanding is because the models are so easily verified through thermocouple measurements. Thermocouples are the most common part-sensing technique used in production. The challenging aspects are the incorporation of the affects of resin flow, resin kinetics, and autoclave position on heat transfer properties. The importance of incorporating resin kinetic models is to properly predict conditions that may lead to exotherms, especially for thick laminates [17]. [Pg.313]

It is not possible to discuss real-time control without a brief discussion of sensors and the measurements they represent. In traditional process control, the measurements and the properties to be controlled are identical. For instance, one controls the temperature of a fluid using feedback from a thermocouple. There is also generally a fairly predictable relationship between the measurement and the forcing function necessary to change that measurement. Except for unusually simple cases, that is not true of polymer processing. The multiple, complex properties to be controlled cannot be measured and are not always... [Pg.458]

Finally, predicted and simulated catalyst temperatures are compared in Fig. 23. These temperatures were measured by a thermocouple inserted into the catalyst 25 mm from the front face, as measured in the axial direction. The agreement between measurement and prediction is good, indicating that the thermal properties used in the model for the catalyst/substrate are reasonable. [Pg.76]


See other pages where Thermocouples properties is mentioned: [Pg.1230]    [Pg.1230]    [Pg.146]    [Pg.384]    [Pg.193]    [Pg.343]    [Pg.463]    [Pg.173]    [Pg.513]    [Pg.402]    [Pg.505]    [Pg.508]    [Pg.244]    [Pg.95]    [Pg.250]    [Pg.258]    [Pg.113]    [Pg.253]    [Pg.143]    [Pg.293]    [Pg.485]    [Pg.300]    [Pg.716]    [Pg.805]    [Pg.600]    [Pg.616]    [Pg.66]    [Pg.340]    [Pg.47]    [Pg.402]    [Pg.505]    [Pg.508]   
See also in sourсe #XX -- [ Pg.545 , Pg.546 ]




SEARCH



Properties of Common Thermocouple Materials

Thermal properties thermocouples, power

Thermocouple

Thermocoupling

© 2024 chempedia.info