Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon carbide thermal properties

Semiconducting Properties. Silicon carbide is a semiconductor it has a conductivity between that of metals and insulators or dielectrics (4,13,46,47). Because of the thermal stability of its electronic structure, silicon carbide has been studied for uses at high (>500° C) temperature. The Hall mobility in silicon carbide is a function of polytype (48,49), temperature (41,42,45—50), impurity, and concentration (49). In n-type crystals, activation energy for ionization of nitrogen impurity varies with polytype (50,51). [Pg.465]

There are, of course, many more ceramics available than those listed here alumina is available in many densities, silicon carbide in many qualities. As before, the structure-insensitive properties (density, modulus and melting point) depend little on quality -they do not vary by more than 10%. But the structure-sensitive properties (fracture toughness, modulus of rupture and some thermal properties including expansion) are much more variable. For these, it is essential to consult manufacturers data sheets or conduct your own tests. [Pg.166]

The first type of polycarbosilane synthesized by using ADMET methodology was a poly[carbo(dimethyl)silane].14c Linear poly(carbosilanes) are an important class of silicon-containing polymers due to their thermal, electronic, and optical properties.41 They are also ceramic precursors to silicon carbide after pyrolysis. ADMET opens up a new route to synthesize poly(carbosilanes), one that avoids many of the limitations found in earlier synthetic methods.41... [Pg.450]

Silicon carbide, SiC [1] and silicon nitride, Si3N4 [2], have been known for some time. Their properties, especially high thermal and chemical stability, hardness, high strength, and a variety of other properties have led to useful applications for both of these materials. [Pg.143]

Polysilanes. Following the first reports of soluble and processable polysilanes in the late 1970s, these macromolecules have attracted substantial interest from both fundamental and applied perspectives." The backbone of silicon atoms gives rise to unique electronic and optical properties as a result of the delocalisation of a-electrons. Several polysilanes have also been found to function as useful thermal precursors to silicon carbide fibres and these materials have also attracted attention with respect to microlithographic applications and as polymerisation initiators." ... [Pg.167]

Electrical Properties. The electrical properties of silicon carbide are highly sensitive to purity, density, and even to the electrical and thermal... [Pg.465]

NISTCERAM National Institute of Standards and Techology Gas Research Institute, Ceramics Division mechanical, physical, electrical, thermal, corrosive, and oxidation properties for alumina nitride, beryllia, boron nitride, silicon carbide, silicon nitride, and zirconia... [Pg.119]

Blissett, M.J., Smith, P. A., Yeomans, J.A. (1997), Thermal shock behaviour of unidirectional silicon carbide fibre reinforced calcium aluminosilicate , J. Mater. Sci., 32, 317-325. Blissett, M.J., Smith, P.A., Yeomans, J.A. (1998), Flexural mechanical properties of thermally treated unidirectional and cross-ply Nicalon-reinforced calcium aluminosilicate composites , J. Mater. Sci., 33, 4181 —4190. [Pg.428]

The thermodynamics of the above-elucidated SiC/C and SijN Si composites are determined by the decomposition of silicon carbide and silicon nitride, respectively, into their elements. The chemistry of ternary Si-C-N composites is more complex. If producing Si-C-N ceramics for applications at elevated temperature, reactions between carbon and silicon nitride have to be considered. Figure 18.2, which exhibits a ternary phase diagram valid up to 1484°C (1 bar N2) displays the situation. The only stable crystalline phases under these conditions are silicon carbide and silicon nitride. Ceramics with compositions in the three-phase field SiC/Si3N4/N are unknown (this is a consequence of the thermal instability of C-N bonds). Although composites within the three-phase field SiC/Si3N4/Si are thermodynamically stable even above 1500°C, such materials are rare. The reasons are difficulties in the synthesis of the required precursors and silicon melting above 1414°C. The latter aspect is of relevance, since liquid silicon dramatically worsens the mechanical properties of the derived ceramics. [Pg.234]

There is the possibility to make substrates in various materials Alumina is an obvious possibility, but monoliths formed from alumina are particularly susceptible to thermal shock problems, and they readily crack during rapid temperature excursions. Silicon carbide and boron nitride are other possible materials having good properties, but they are expensive. [Pg.97]


See other pages where Silicon carbide thermal properties is mentioned: [Pg.411]    [Pg.664]    [Pg.318]    [Pg.321]    [Pg.120]    [Pg.385]    [Pg.293]    [Pg.568]    [Pg.664]    [Pg.1]    [Pg.221]    [Pg.120]    [Pg.382]    [Pg.115]    [Pg.285]    [Pg.327]    [Pg.350]    [Pg.633]    [Pg.92]    [Pg.320]    [Pg.83]    [Pg.87]    [Pg.415]    [Pg.530]    [Pg.694]    [Pg.400]    [Pg.616]    [Pg.263]    [Pg.278]    [Pg.285]    [Pg.314]    [Pg.317]    [Pg.318]    [Pg.320]    [Pg.321]    [Pg.250]    [Pg.382]    [Pg.126]    [Pg.413]   
See also in sourсe #XX -- [ Pg.277 ]




SEARCH



CARBIDES SILICON CARBIDE

Carbide , properties

Silicon carbide

Silicone carbide

Silicones properties

Thermal silicon carbide

© 2024 chempedia.info