Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal detachment

Jezo further proposed20 that the methylpyrazines are formed by thermal detachment of the side chains (see Scheme 6) these fragments could then combine with ammonia to form the imidazoles. [Pg.335]

Sahlstrom et al. [60] showed that the thermal detachment of an electron from an anion is observed readily in an ion mobility spectrometer. At an appropriate temperature, anions formed in the source decompose by thermal electron detachment in the drift region. The electrons move rapidly in the electrostatic field to the detector plate and their intensity at arrival time is a measure of the number of anions disappearing at that time. The resulting spectrum, of the form of Figure 13.2d, shows an elevated baseline that has a maximum at zero time, that is, for electron detachment at the shutter where the anion concentration is highest, and terminates at the peak for survivor anions. Examples of the mobility spectra obtained for thermal electron detachment from the azulene anion at different temperatures are shown in Figure 13.9. The Cl" peaks in the spectra are due to background ions formed in the source and do not interfere with the analysis. The exponential decay of the elevated baseline is described by... [Pg.409]

Thermal Oxidative Stability. ABS undergoes autoxidation and the kinetic features of the oxygen consumption reaction are consistent with an autocatalytic free-radical chain mechanism. Comparisons of the rate of oxidation of ABS with that of polybutadiene and styrene—acrylonitrile copolymer indicate that the polybutadiene component is significantly more sensitive to oxidation than the thermoplastic component (31—33). Oxidation of polybutadiene under these conditions results in embrittlement of the mbber because of cross-linking such embrittlement of the elastomer in ABS results in the loss of impact resistance. Studies have also indicated that oxidation causes detachment of the grafted styrene—acrylonitrile copolymer from the elastomer which contributes to impact deterioration (34). [Pg.203]

In systems of LP the dynamic response to a temperature quench is characterized by a different mechanism, namely monomer-mediated equilibrium polymerization (MMEP) in which only single monomers may participate in the mass exchange. For this no analytic solution, even in terms of MFA, seems to exist yet [70]. Monomer-mediated equilibrium polymerization (MMEP) is typical of systems like poly(a-methylstyrene) [5-7] in which a reaction proceeds by the addition or removal of a single monomer at the active end of a polymer chain after a radical initiator has been added to the system so as to start the polymerization. The attachment/detachment of single monomers at chain ends is believed to be the mechanism of equilibrium polymerization also for certain liquid sulphur systems [8] as well as for self-assembled aggregates of certain dyes [9] where chain ends are thermally activated radicals with no initiators needed. [Pg.539]

Among the molecules, however, business is going on as usual. Iodine dissolves by the detachment of surface layer molecules from the iodine crystals. The rate at which this process occurs is fixed by the stability of the crystal (tending to hold the molecules in the surface layer) and the temperature (the thermal agitation tending to dislodge the molecules from their lattice positions). As the dissolving continues, the concentration of iodine molecules in the solution increases. [Pg.144]

While A

metal-water interactions are better probed by thermal desorption spectroscopy (TDS) in which heat is used to detach molecules from a surface. TDS data are in parallel with A (and AX) data. This is illustrated in Fig. 19.35 The spectrum of Ag(110) shows only one peak at 150 K, corresponding to ice sublimation. This means that Ag-H20 interactions are weaker than H20-H20 interactions (although they are still able to change the structure of the... [Pg.171]

Enhanced thermal stability enlarges the areas of application of protein films. In particular it might be possible to improve the yield of reactors in biotechnological processes based on enzymatic catalysis, by increasing the temperature of the reaction and using enzymes deposited by the LB technique. Nevertheless, a major technical difficulty is that enzyme films must be deposited on suitable supports, such as small spheres, in order to increase the number of enzyme molecules involved in the process, thus providing a better performance of the reactor. An increased surface-to-volume ratio in the case of spheres will increase the number of enzyme molecules in a fixed reactor volume. Moreover, since the major part of known enzymatic reactions is carried out in liquid phase, protein molecules must be attached chemically to the sphere surface in order to prevent their detachment during operation. [Pg.156]

The only depositional landform associated with mass wasting is the talus cone or rock debris cone . In barren deserts or mountains, temperature differences between day and night can be considerable and this frequently results in thermal disintegration of rocks. Salt crystals in the fissures may accelerate the process. Detached fragments of rocks and stones accumulate in debris cones at the foot of an inselberg or mountain. [Pg.9]

In a nonattaching gas electron, thermalization occurs via vibrational, rotational, and elastic collisions. In attaching media, competitive scavenging occurs, sometimes accompanied by attachment-detachment equilibrium. In the gas phase, thermalization time is more significant than thermalization distance because of relatively large travel distances, thermalized electrons can be assumed to be homogeneously distributed. The experiments we review can be classified into four categories (1) microwave methods, (2) use of probes, (3) transient conductivity, and (4) recombination luminescence. Further microwave methods can be subdivided into four types (1) cross modulation, (2) resonance frequency shift, (3) absorption, and (4) cavity technique for collision frequency. [Pg.250]

The actual construction details of blowout panels is beyond the scope of the text. A detached blowout panel moving at high velocity can cause considerable damage. Therefore a mechanism must be provided to retain the panel during the deflagration process. Furthermore, thermal insulation of panels is also required. Construction details are available in manufacturers literature. [Pg.405]

Williamson, D.H. Knighton, W.B. Grimsrud, E.P. Effect of Buffer Gas Alterations on the Thermal Electron Attachment and Detachment Reactions of Azu-lene by Pulsed High Pressure Mass Spectrometry. Int. J. Mass Spectrom. 2000, 795/796,481-489. [Pg.354]

In order to measure the magnitude of the chemical interactions between various ions and buffer gases, approaches that are based on the measurements of either equilibrium or rate constants for ionic processes can be envisioned. An example of a kinetic method is described in the following. The unimolecular kinetic process known as thermal electron detachment (TED) for negative ions (NT -> M + e), should be particularly sensitive to a chemical effect of the buffer gas. This is because the rate of TED will be given by = constant x where the electron... [Pg.228]

In the case of silicon fusion, which begins at around 2 billion K, the reactions proceed in a slightly different manner and we return to a fusion scheme similar to that of neon. At this temperature, silicon nuclei are gradually gnawed down by thermal photons which detach helium nuclei, protons and neutrons from them. These light nuclei combine with intact silicon to give nuclei in the region of iron. Schematically,... [Pg.100]

Figure 3.3. Various features of diffusion and convection associated with crystal growth in solution (a) in a beaker and (b) around a crystal. The crystal is denoted by the shaded area. Shown are the diffusion boundary layer (db) the bulk diffusion (D) the convection due to thermal or gravity difference (T) Marangoni convection (M) buoyancy-driven convection (B) laminar flow, turbulent flow (F) Berg effect (be) smooth interface (S) rough interface (R) growth unit (g). The attachment and detachment of the solute (solid line) and the solvent (open line) are illustrated in (b). Figure 3.3. Various features of diffusion and convection associated with crystal growth in solution (a) in a beaker and (b) around a crystal. The crystal is denoted by the shaded area. Shown are the diffusion boundary layer (db) the bulk diffusion (D) the convection due to thermal or gravity difference (T) Marangoni convection (M) buoyancy-driven convection (B) laminar flow, turbulent flow (F) Berg effect (be) smooth interface (S) rough interface (R) growth unit (g). The attachment and detachment of the solute (solid line) and the solvent (open line) are illustrated in (b).
To prevent any undesirable distillation and/or bumping which would cause concentration fluctuations, the procedures outlined by Juliano (19) were carefully followed. Next, each detached dilatometer was securely clamped in a constant temperature bath which was maintained at 20, 30, or 40°C as desired. Readings were taken with a cathetometer after the initial thermal expansion to the bath temperature. The data were treated as described by Pett. (20) The dilatometric treatment was also used for those reactions where a conversion versus time curve was required for later estimation of extent of conversion. [Pg.532]


See other pages where Thermal detachment is mentioned: [Pg.242]    [Pg.219]    [Pg.295]    [Pg.117]    [Pg.242]    [Pg.1904]    [Pg.118]    [Pg.242]    [Pg.219]    [Pg.295]    [Pg.117]    [Pg.242]    [Pg.1904]    [Pg.118]    [Pg.16]    [Pg.399]    [Pg.288]    [Pg.983]    [Pg.1006]    [Pg.21]    [Pg.34]    [Pg.182]    [Pg.53]    [Pg.5]    [Pg.310]    [Pg.731]    [Pg.420]    [Pg.32]    [Pg.28]    [Pg.409]    [Pg.239]    [Pg.3]    [Pg.137]    [Pg.233]    [Pg.84]    [Pg.305]    [Pg.554]    [Pg.184]    [Pg.155]   
See also in sourсe #XX -- [ Pg.305 ]




SEARCH



© 2024 chempedia.info