Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The nickel catalyst

The selective addition of the second HCN to provide ADN requires the concurrent isomerisation of 3PN to 4-pentenenitrile [592-51 -8] 4PN (eq. 5), and HCN addition to 4PN (eq. 6). A Lewis acid promoter is added to control selectivity and increase rate in these latter steps. Temperatures in the second addition are significandy lower and practical rates may be achieved above 20°C at atmospheric pressure. A key to the success of this homogeneous catalytic process is the abiUty to recover the nickel catalyst from product mixture by extraction with a hydrocarbon solvent. 2-Methylglutaronitrile [4553-62-2] MGN, ethylsuccinonitfile [17611-82-4] ESN, and 2-pentenenitrile [25899-50-7] 2PN, are by-products of this process and are separated from adiponitrile by distillation. [Pg.221]

Naphtha desulfurization is conducted in the vapor phase as described for natural gas. Raw naphtha is preheated and vaporized in a separate furnace. If the sulfur content of the naphtha is very high, after Co—Mo hydrotreating, the naphtha is condensed, H2S is stripped out, and the residual H2S is adsorbed on ZnO. The primary reformer operates at conditions similar to those used with natural gas feed. The nickel catalyst, however, requires a promoter such as potassium in order to avoid carbon deposition at the practical levels of steam-to-carbon ratios of 3.5—5.0. Deposition of carbon from hydrocarbons cracking on the particles of the catalyst reduces the activity of the catalyst for the reforming and results in local uneven heating of the reformer tubes because the firing heat is not removed by the reforming reaction. [Pg.420]

The chain-growth catalyst is prepared by dissolving two moles of nickel chloride per mole of bidentate ligand (BDL) (diphenylphosphinobenzoic acid in 1,4-butanediol). The mixture is pressurized with ethylene to 8.8 MPa (87 atm) at 40°C. Boron hydride, probably in the form of sodium borohydride, is added at a molar ratio of two borohydrides per one atom of nickel. The nickel concentration is 0.001—0.005%. The 1,4-butanediol is used to solvent-extract the nickel catalyst after the reaction. [Pg.439]

Effect of Catalyst The catalysts used in hydrotreating are molybdena on alumina, cobalt molybdate on alumina, nickel molybdate on alumina or nickel tungstate. Which catalyst is used depends on the particular application. Cobalt molybdate catalyst is generally used when sulfur removal is the primary interest. The nickel catalysts find application in the treating of cracked stocks for olefin or aromatic saturation. One preferred application for molybdena catalyst is sweetening, (removal of mercaptans). The molybdena on alumina catalyst is also preferred for reducing the carbon residue of heating oils. [Pg.67]

The Ni-catalyzed oligomerization of olefins in ionic liquids requires a careful choice of the ionic liquid s acidity. In basic melts (Table 5.2-2, entry (a)), no dimerization activity is observed. FFere, the basic chloride ions prevent the formation of free coordination sites on the nickel catalyst. In acidic chloroaluminate melts, an oligomerization reaction takes place even in the absence of a nickel catalyst (entry (b)). FFowever, no dimers are produced, but a mixture of different oligomers is... [Pg.245]

Unfortunately, investigations with ionic liquids containing high amounts of AlEtCl2 showed several limitations, including the reductive effect of the alkylaluminium affecting the temperature stability of the nickel catalyst. At very high alkylaluminium concentrations, precipitation of black metallic nickel was observed even at room temperature. [Pg.246]

Hydrogen sulfide is present in the feed gas, or it can be formed by hydrogen reduction of any sulfur-bearing compound over the nickel catalyst. [Pg.25]

RSH and COS were not included since they are expected to hydrogenate to H2S over the nickel catalyst. [Pg.63]

The methanation process commonly operates at pressures up to 30 atm, and, with the nickel catalyst which is almost universally used for the process, the inlet temperature is about 300°C ( 570°F). Almost complete conversion of the oxides of carbon occurs giving a product synthesis gas containing less than 5 ppm CO + C02. The temperature rise for the exothermic methanation reactions is typically 35 °C (63°F). [Pg.80]

These tests demonstrated that the Lurgi Rectisol process provides an extremely pure synthesis gas which can be charged directly to the metha-nation plant without problems of sulfur poisoning of the nickel catalyst. However, in order to cope with a sudden sulfur breakthrough from Rectisol as a result of maloperation, a commercial methanation plant should be operated with a ZnO emergency catchpot on line. [Pg.129]

Anonymous Several speakers found iron deposited on the nickel catalyst. Where is the iron believed to come from, and what steps will be taken to prevent the deposition ... [Pg.174]

The attention of the authors was particularly directed toward the increased activity of the nickel catalyst film when copper was added. This increase is revealed in a change of the initial reaction rate of copper itself and of all the alloys (except those containing 25-35% nickel) they are more active than nickel itself. A respectively similar difference was observed for the activation energy and the preexponential factor. [Pg.271]

In comparison to the Ziegler catalyst, the use of the nickel catalyst system offers the following advantages [34] ... [Pg.50]

An example that illustrates the influence of the nickel catalyst on the reaction yield is the cycloaddition between tricyclo [5.3.1.0" ]-undeca-2,5-diene(90) and dimethylacetylenedicarboxylate (Equation 3.31). Whereas a thermal process afforded cycloadduct 91 in an unsatisfactory yield (22 %), the catalyzed process... [Pg.127]

As shown in this table, the metal catalysts used in the literature are mostly complexes of Ni or Cu and less often Co or Pd. For soft nucleophiles, on the left of the table, the efficiency of the nickel catalysts was already reported. Here, are presented the investigations concerning the arylation of hard nucleophiles such as amines, alcohols or hydroxide anion, using Ni, Pd and Cu catalysts. [Pg.243]

Therefore, for the arylation of oxygenated nucleophiles, particularly of the alcohols, the investigations were focused on the nickel catalysts (Fig. 8). [Pg.247]

These results point out, for the arylation of alcohols, a better activity of the nickel catalysts in comparison to the copper analogs. That might be probably connected to the harder character of nickel(II) complexes in comparison to the copper analogs. [Pg.249]

A new comparison of the copper and nickel catalysts (Fig. 12) on the arylation of alcohols, using potassium carbonate as base, shows once again the superiority of the nickel catalyst (70 % against 40 % for the copper catalyst). [Pg.250]

The Nickel catalyst used for comparison was Calsicat E472D from Mallinckrodt Specialty Chemicals containing 22% Ni. [Pg.273]

For some applications of this chemistry, it may be preferable first to reduce the nickel catalyst with DIBAL.3... [Pg.179]

In several separate small scale experiments, It was noted that the coupling reaction was not impeded by adding pyridine, triethylamine, t-butyl alcohol, chlorotrimethylsilane, or diisopropylamine to the reaction mixture before adding the nickel catalyst. These results suggest that a variety of functional groups can be present in the enone partner of the coupling reaction. In addition toluene can be used instead of tetrahydrofuran as the solvent. [Pg.179]

The bottle is connected to the hydrogenation apparatus and alternately evacuated and filled with hydrogen twice. Hydrogen is then admitted to the system until the pressure gauge reads 40 lb. The shaker is started, and the pressure drops to the theoretical value for absorption of 0.6 mole in 15-20 minutes beyond this point shaking causes no further absorption of hydrogen (Note 2). The bottle is removed and the nickel catalyst is allowed to settle. The tetrahydropyrane is decanted, but enough... [Pg.45]

The Lewis acidity and reactivity of these alkyl aluminum cocatalysts and activators with Lewis basic polar monomers such as acrylates make them impractical components in the copolymerization of ethylene with acrylates. To address this shortcoming, Brookhart et al. developed well-defined cationic species such as that shown in Fig. 2, in which the counterion (not illustrated) was the now-ubiquitous fluorinated arylborate family [34] such as tetrakis(pentaflurophenyl)borate. At very low methyl acrylate levels the nickel catalysts gave linear copolymers but with near-zero levels of acrylate incorporation. [Pg.164]

The nickel catalyst under the condition for the 1 1 codimerization is not known to dimerize or polymerize ethylene, although a similar catalyst system has been known to dimerize propylene (26, 27) via a w-allyl intermediate. [Pg.308]

The isomer distribution of the nickel catalyst system in general is similar qualitatively to that of the Rh catalyst system described earlier. However, quantitatively it is quite different. In the Rh system the 1,2-adduct, i.e., 3-methyl-1,4-hexadiene is about 1-3% of the total C6 products formed, while in the Ni system it varies from 6 to 17% depending on the phosphine used. There is a distinct trend that the amount of this isomer increases with increasing donor property of the phosphine ligands (see Table X). The quantity of 3-methyl-1,4-pentadiene produced is not affected by butadiene conversion. On the other hand the formation of 2,4-hexadienes which consists of three geometric isomers—trans-trans, trans-cis, and cis-cis—is controlled by butadiene conversion. However, the double-bond isomerization reaction of 1,4-hexadiene to 2,4-hexadiene by the nickel catalyst is significantly slower than that by the Rh catalyst. Thus at the same level of butadiene conversion, the nickel catalyst produces significantly less 2,4-hexadiene (see Fig. 2). [Pg.308]

In the literature there are many reports of the formation of active catalyst for the 1 1 codimerization or synthesis of 1,4-hexadiene employing a large variety of Co or Fe salts, in conjunction with different kinds of ligands and organometallic cocatalysts. There must have been many structures, all of which are active for the codimerization reaction to one degree or another. The scope of the catalyst compositions claimed to be active as the codimerization catalysts is shown in Table XV (69-82). As with the nickel catalyst system discussed earlier, the preferred Co or Fe catalyst system requires the presence of phosphine ligands and an alkylaluminum cocatalyst. The catalytic property can be optimized by structural control of these two components. [Pg.310]


See other pages where The nickel catalyst is mentioned: [Pg.14]    [Pg.418]    [Pg.344]    [Pg.91]    [Pg.412]    [Pg.273]    [Pg.319]    [Pg.8]    [Pg.28]    [Pg.172]    [Pg.248]    [Pg.193]    [Pg.299]    [Pg.62]    [Pg.498]    [Pg.160]    [Pg.97]    [Pg.129]    [Pg.383]    [Pg.161]    [Pg.57]    [Pg.164]    [Pg.135]    [Pg.300]    [Pg.307]   
See also in sourсe #XX -- [ Pg.527 ]

See also in sourсe #XX -- [ Pg.527 ]




SEARCH



Preparation of the heterogeneous catalyst nickel-on-charcoal

The First Industrial Application of Nickel Catalysts

© 2024 chempedia.info