Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Molybdenum Hydroxylases

In the first family, the metal is coordinated by one molecule of the pterin cofactor, while in the second, it is coordinated to two pterin molecules (both in the guanine dinucleotide form, with the two dinucleotides extending from the active site in opposite directions). Some enzymes also contain FejSj clusters (one or more), which do not seem to be directly linked to the Mo centers. The molybdenum hydroxylases invariably possess redox-active sites in addition to the molybdenum center and are found with two basic types of polypeptide architecture. The enzymes metabolizing quinoline-related compounds, and derivatives of nicotinic acid form a separate groups, in which each of the redox active centers are found in separate subunits. Those enzymes possessing flavin subunits are organized as a2jS2A2, with a pair of 2Fe-2S centers in the (3 subunit, the flavin in the (3 subunit, and the molybdenum in the y subunit. [Pg.167]

Upon purification of the XDH from C. purinolyticum, a separate Se-labeled peak appeared eluting from a DEAE sepharose column. This second peak also appeared to contain a flavin based on UV-visible spectrum. This peak did not use xanthine as a substrate for the reduction of artificial electron acceptors (2,6 dichlor-oindophenol, DCIP), and based on this altered specificity this fraction was further studied. Subsequent purification and analysis showed the enzyme complex consisted of four subunits, and contained molybdenum, iron selenium, and FAD. The most unique property of this enzyme lies in its substrate specificity. Purine, hypoxanthine (6-OH purine), and 2-OH purine were all found to serve as reductants in the presence of DCIP, yet xanthine was not a substrate at any concentration tested. The enzyme was named purine hydroxylase to differentiate it from similar enzymes that use xanthine as a substrate. To date, this is the only enzyme in the molybdenum hydroxylase family (including aldehyde oxidoreductases) that does not hydroxylate the 8-position of the purine ring. This unique substrate specificity, coupled with the studies of Andreesen on purine fermentation pathways, suggests that xanthine is the key intermediate that is broken down in a selenium-dependent purine fermentation pathway. ... [Pg.141]

Xanthine oxidase (XO) was the first enzyme studied from the family of enzymes now known as the molybdenum hydroxylases (HiUe 1999). XO, which catalyzes the hydroxylation of xanthine to uric acid is abundant in cow s milk and contains several cofactors, including FAD, two Fe-S centers, and a molybdenum cofactor, all of which are required for activity (Massey and Harris 1997). Purified XO has been shown to use xanthine, hypoxan-thine, and several aldehydes as substrates in the reduction of methylene blue (Booth 1938), used as an electron acceptor. Early studies also noted that cyanide was inhibitory but could only inactivate XO during preincubation, not during the reaction with xanthine (Dixon 1927). The target of cyanide inactivation was identified to be a labile sulfur atom, termed the cyanolyzable sulfur (Wahl and Rajagopalan 1982), which is also required for enzyme activity. [Pg.164]

In addition to the molybdenum hydroxylases mentioned above, a new selenium-dependent hydroxylase with specificity for purine and hypoxan-thine as substrates, termed purine hydroxylase, was uncovered during purification of XDH from C. purinolyticum (Self and Stadtman 2000). Purified PH was labeled with Se and was not reduced in the presence of xanthine as a substrate. As with other selenium-dependent molybdenum hydroxylases, selenium was removed by treatment with cyanide with parallel loss in catalytic activity. Selenium was also efficiently removed in the presence of low ionic strength buffer during final dialysis of PH, indicating that ionic strength affects the stability of the labile selenium cofactor in this enzyme. [Pg.166]

The rationale for studies on flavin semiquinone metal interactions stems from the presence of flavin coenzymes which participate in electron transfer in a number of metalloflavoproteins. Iron-containing redox centers such as the heme and nonheme iron sulfur prosthetic groups (Fe2/S2, Fe+ZS, or the rubredoxin-type of iron center) constitute the more common type of metal donor-acceptor found in metalloflavoproteins, although molybdenum is encountered in the molybdenum hydroxylases (e.g. xanthine oxidase, aldehyde dehydrogenase). [Pg.118]

Electron density calculations suggest that electrophilic attack in pyridine (42) is favored at C-3, whereas nucleophilic attack occurs preferentially at C-2 and to a lesser extent at C-4. Cytochrome P-450 mediated ring hydroxylation of pyridine would, therefore, be expected to occur predominantly at C-3, the most electron-rich carbon atom. Although 3-hydroxypyridine is an in vivo metabolite in several species, the major C-oxidation product detected in the urine of most species examined was 4-pyridone (82MI10903). The enzyme system catalyzing the formation of this latter metabolite may involve the molybdenum hydroxylases and not cytochrome P-450 (see next paragraph). In the related heterocycle quinoline (43), positions of high electron density are at C-3, C-6 and C-8, while in isoquinoline (44) they are at C-5, C-7 and C-8. Nucleophilic substitution predictably occurs... [Pg.232]

In addition to these classical aromatic ring hydroxylations, many nitrogen heterocycles are substrates for molybdenum-containing enzymes, such as xanthine oxidase and aldehyde oxidase, which are present in the hepatic cytosolic fractions from various animal species. The molybdenum hydroxylases (B-75MI10902) catalyze the oxidation of electron-deficient carbons in aromatic nitrogen heterocycles. The reactions catalyzed by these enzymes are generally represented by equations (2) and (3). [Pg.232]

It is not known at present if the nickel is coordinated directly to the protein, as in copper and iron-sulfur proteins, or to an organic cofactor, as in the molybdenum hydroxylases and hemoproteins. [Pg.308]

A number of functional groups, such as nitro, diazo, carbonyls, disulfides, sulfoxides, and alkenes, are susceptible to reduction. In many cases it is difficult to determine whether these reactions proceed nonenzymatically by the action of biological reducing agents such as NADPFI, NADH, and FAD or through the mediation of functional enzyme systems. As noted above, the molybdenum hydroxylases can carry out, in vitro, a number of reduction reactions, including nitro, azo, A-oxidc, and sulfoxide reduction. Although the in vivo consequences of this are not yet clear, much of the distribution of reductases described below may be, in whole or in part, the distribution of molybdenum hydroxylases. [Pg.189]


See other pages where The Molybdenum Hydroxylases is mentioned: [Pg.24]    [Pg.51]    [Pg.401]    [Pg.133]    [Pg.94]    [Pg.226]    [Pg.232]    [Pg.233]    [Pg.234]    [Pg.543]    [Pg.658]    [Pg.126]    [Pg.128]    [Pg.188]    [Pg.446]    [Pg.448]    [Pg.448]    [Pg.448]    [Pg.449]    [Pg.451]    [Pg.451]    [Pg.453]    [Pg.453]    [Pg.455]    [Pg.456]    [Pg.456]    [Pg.457]    [Pg.458]    [Pg.458]    [Pg.463]    [Pg.464]    [Pg.471]    [Pg.477]    [Pg.73]    [Pg.75]    [Pg.226]    [Pg.232]    [Pg.233]    [Pg.234]   


SEARCH



Molybdenum hydroxylase

Molybdenum hydroxylases

© 2024 chempedia.info