Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Basics of Catalysis

Let us begin by defining some key terms. For a given reaction A— B, the conversion of A (denoted with a Greek letter chi, Xa) is the number of molecules of A that have reacted up to time t. Similarly, the yield (there is no common symbol [Pg.39]

Catalysis Concepts and Green Applications. Gadi Rothenberg Copyright 2008 WILEY-VCH Veriag GmbH Co. KGaA, Weinheim ISBN 978-3-527-31824-7 [Pg.39]


To really understand the basics of catalysis, we can try to understand how some of the best catalysts work. Enzymes are biochemical catalysts with exceptional abilities to speed up reactions. There are enzymes in your body that are highly selective and work in water and at mild temperatures, and some are so fast that they can produce their products as fast as the reactants can diffuse to them. [Pg.56]

Advantages of scanning tunneling microscopy (STM) in understanding the basics of catalysis, electrocatalysis and electrodeposition... [Pg.522]

Phenols. Phenols are unreactive toward chloroformates at room temperature and at elevated temperatures the yields of carbonates are relatively poor (< 10%) in the absence of catalysis. Many catalysts have been claimed in the patent Hterature that lead to high yields of carbonates from phenol and chloroformates. The use of catalyst is even more essential in the reaction of phenols and aryl chloroformates. Among the catalysts claimed are amphoteric metals or thek haUdes (16), magnesium haUdes (17), magnesium or manganese (18), secondary or tertiary amines such as imidazole (19), pyridine, quinoline, picoline (20—22), heterocycHc basic compounds (23) and carbonamides, thiocarbonamides, phosphoroamides, and sulfonamides (24). [Pg.39]

The 1-azirine ring also undergoes a number of reactions in which the heterocycle plays the role of the nucleophile. Although the basicity of the nitrogen atom in the azirine ring is much lower than in simple aliphatic amines, this system can still function as a nucleophilic reagent. One example of this involves the acid-catalyzed hydrolysis of 1-azirines to a-aminoketones (200) which represents a well-established reaction. In fact, in many reactions of 1-azirines where acid catalysis is used, formation of a-aminoketones is difficult to avoid (67JA44S6). [Pg.69]

The rate of reaction of a series of nucleophiles with a single substrate is related to the basicity when the nucleophilic atom is the same and the nucleophiles are closely related in chemical type. Thus, although the rates parallel the basicities of anilines (Tables VII and VIII) as a class and of pyridine bases (Tables VII and VIII) as a class, the less basic anilines are much more reactive. This difference in reactivity is based on a lower energy of activation as is the reactivity sequence piperidine > ammonia > aniline. Further relationships among the nucleophiles found in this work are morpholine vs. piperidine (Table III) methoxide vs. 4-nitrophenoxide (Table II) and alkoxides vs. piperidine (Tables II, III, and VIII). Hydrogen bonding in the transition state and acid catalysis increase the rates of reaction of anilines. Reaction rates of the pyridine bases are decreased by steric hindrance between their alpha hydrogens and the substituents or... [Pg.283]

For coupling with 2-naphthol-6,8-disulphonic-l-isotope effects (kK/kD) varied with the substituent in the benzenediazonium ion as follows 4-C1 (6.55) 3-C1 (5.48) 4-N02 (4.78), i.e. the reactivity of the ion was increased so that i correspondingly decreased. Base catalysis was observed127, 129, and there was a free energy relationship between this catalytic effect and the basicity of pyridine, 3- and 4-picoline. However, for 2-picoline and 2,6-lutidine, the catalysis was 3 times and 10 times less than expected from their basicities showing that, in this particular proton transfer, steric hindrance is important. [Pg.53]

The Division of Chemical Sciences in OER supports basic chemical research. The primary involvement of chemical engineers with this program has been in the areas of catalysis and separations. Given the broad range of energy apphcations in which the structure and chemistry of interfaces is important, the committee recommends that the Division undertake an initiative in the chemical control of surfaces, interfaces, and microstractures. This would include support of work by both chemists and chemical engineers in the areas of surface chemistry, plasma chemistry, and colloid and interfacial chemistry. [Pg.206]

Let us consider the basic enzyme catalysis mechanism described by the Michaelis-Menten equation (Eq. 2). It includes three elementary steps, namely, the reversible formation and breakdown of the ES complex (which does not mean that it is at equilibrium) and the decomposition of the ES complex into the product and the regenerated enzyme ... [Pg.334]

The structure of this review is as follows. Section II focuses on the basic principles of MRI techniques, and then more advanced techniques which have been used to study catalytic reactors will be introduced in Section III. To illustrate the use of these techniques examples will be given from the field of catalysis, although not necessarily at the scale of the reactor and, in some cases, data for model systems will be shown. Section IV describes methods used to achieve chemical mapping. Section V focuses exclusively on previous research which has used MRI techniques to spatially resolve chemical composition in fixed-bed reactors. [Pg.285]

Microorganisms have been shown to catalyze the formation of nitrosamines from secondary amines in the presence of nitrite (26). The amount of nitrosamine formed, however, increased as the basicity of the parent amine decreased, presumably due to the increase in the amount of unprotonated amine present (27). This reaction is especially important with respect to metalworking fluids since water-based fluids are inevitably contaminated by microbes and fungi. Microbes are thought to catalyze nitrosamine formation by lowering the pH of the medium or catalysis by one or more unidentified metabolic products. [Pg.162]

In an extension of an early work on the nickel-catalyzed addition of hydrogen cyanide to unsaturated compounds, a basic reaction in various large-scale processes in the polymer industry, the hydrocyanation of butadiene (equation 15) and the efficiency of catalysis of this reaction by low-cost copper salts has been studied extensively by Belgium researchers47,48. [Pg.556]

The book presents a review of sixteen important topics in modem homogeneous catalysis. While the focus is on concepts, many key industrial processes and applications that are important in the laboratory synthesis of organic chemicals are used as real world examples. After an introduction to the field, the elementary steps needed for an understanding of the mechanistic aspects of the various catalytic reactions have been described. Chapter 3 gives the basics of kinetics, thus stressing that kinetics, so often neglected, is actually a key part of the foundation of catalysis. [Pg.417]

The key to understanding such processes lies in our ability to dissect the catalytic event into its separate components. Numerous ingenious experiments have been performed by workers in the field of catalysis for many years, and it is not the intent of this article to review these contributions. It is important to note that such studies have advanced the field of catalysis to a refined science and that a number of general observations have been developed which serve as guidelines for the development and improvement of catalytic materials. Insofar as surface science and the study of reactions on macroscopic single crystal surfaces is related to catalysis, its purpose should therefore be to contribute a more exact and, thereby, a more general understanding of the basic phenomena involved. [Pg.2]


See other pages where The Basics of Catalysis is mentioned: [Pg.39]    [Pg.40]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.48]    [Pg.50]    [Pg.52]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.60]    [Pg.64]    [Pg.66]    [Pg.68]    [Pg.72]    [Pg.74]    [Pg.294]    [Pg.39]    [Pg.40]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.48]    [Pg.50]    [Pg.52]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.60]    [Pg.64]    [Pg.66]    [Pg.68]    [Pg.72]    [Pg.74]    [Pg.294]    [Pg.283]    [Pg.452]    [Pg.398]    [Pg.205]    [Pg.295]    [Pg.333]    [Pg.212]    [Pg.1]    [Pg.466]    [Pg.133]    [Pg.8]    [Pg.23]    [Pg.653]    [Pg.173]    [Pg.361]    [Pg.661]    [Pg.391]    [Pg.158]    [Pg.89]   


SEARCH



The Basics

© 2024 chempedia.info