Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Anodic Reaction

Important Reactions in Fuel Cell Technology 9.4.3.1 The Anodic Reaction [1,2] [Pg.311]

The oxidation of hydrogen occurs readUy on Pt-based catalysts. The kinetics of this reaction is very fast on Pt catalysts and in a fuel cell the oxidation of hydrogen at higher current densities is usually controlled by mass-transfer limitations. The oxidation of hydrogen also involves the adsorption of the gas onto the catalyst surface followed by a dissociation of the molecule and electrochemical reaction to two hydrogen ions as follows (Eqs. 9-31 and 9-32)  [Pg.311]

Where Pt(s) is a free surface site and Pt-Hads is an adsorbed H-atom on the Pt active site. The overall reaction of hydrogen oxidation is according Eq. (9-33)  [Pg.311]

One method of combating poisoning of hydrogen electrodes by CO is to modify the catalyst using an approach in which the relative strength of the chemisorbed CO bond is reduced. It is more than 30 years since the discovery of Pt/Ru as an electrocatalyst which is relatively tolerant of CO (relative to pure Pt), and no significantly better electrocatal5dic system has yet been foimd. [Pg.312]

An alternative method of approaching the poisoning effect of carbon monoxide is to clean up the reformed fuel stream prior to admission to the fuel cell. For instance, methanol is fed to a reforming processor which produces a gas stream containing approximately 55% H2, the required fuel mixed with 22% CO2, 21% N2 and 2% CO. The overall process is achieved by combining the exothermic partial oxidation reaction with an endothermic steam reforming reaction over the same catalyst particles. This achieves a very high rate of internal heat transfer and a very easily controlled reactor. In the last step the reformer output can then fed to a clean-up reactor where the fuel is reacted further with air to reduce the CO content from 2% to 10 ppm, a far more viable concentration for the electrocatalysts used in the low temperature fuel cell. [Pg.312]


The oxidation of Ag to Ag+ occurs at the anode (the left-hand cell). Since the solution contains a source of Cb, the anodic reaction is... [Pg.467]

The standard potential for the anodic reaction is 1.19 V, close to that of 1.228 V for water oxidation. In order to minimize the oxygen production from water oxidation, the cell is operated at a high potential that requires either platinum-coated or lead dioxide anodes. Various mechanisms have been proposed for the formation of perchlorates at the anode, including the discharge of chlorate ion to chlorate radical (87—89), the formation of active oxygen and subsequent formation of perchlorate (90), and the mass-transfer-controUed reaction of chlorate with adsorbed oxygen at the anode (91—93). Sodium dichromate is added to the electrolyte ia platinum anode cells to inhibit the reduction of perchlorates at the cathode. Sodium fluoride is used in the lead dioxide anode cells to improve current efficiency. [Pg.67]

The anode reaction depends on the electrolyte used, but the charge-transfer step is... [Pg.522]

In a battery, the anode and cathode reactions occur ia different compartments, kept apart by a separator that allows only ionic, not electronic conduction. The only way for the cell reactions to occur is to mn the electrons through an external circuit so that electrons travel from the anode to the cathode. But ia the corrosion reaction the anode and cathode reactions, equations 8 and 12 respectively, occur at different locations within the anode. Because the anode is a single, electrically conductive mass, the electrons produced ia the anode reaction travel easily to the site of the cathode reaction and the 2iac acts like a battery where the positive and negative terminals are shorted together. [Pg.524]

The cathodic reaction is the reduction of iodine to form lithium iodide at the carbon collector sites as lithium ions diffuse to the reaction site. The anode reaction is lithium ion formation and diffusion through the thin lithium iodide electrolyte layer. If the anode is cormgated and coated with PVP prior to adding the cathode fluid, the impedance of the cell is lower and remains at a low level until late in the discharge. The cell eventually fails because of high resistance, even though the drain rate is low. [Pg.535]

Electrochemical Generation of Chlorine Dioxide from Chlorite. The electrochemical oxidation of sodium chlorite is an old, but not weU-known method of generating chlorine dioxide. Concentrated aqueous sodium chlorite, with or without added conductive salts, is oxidized at the anode of an electrolytic cell having a porous diaphragm-type separator between the anode and cathode compartments (122—127). The anodic reaction is... [Pg.487]

Iron atoms pass into solution in the water as Fe leaving behind two electrons each (the anodic reaction). These are conducted through the metal to a place where the oxygen reduction reaction can take place to consume the electrons (the cathodic reaction). This reaction generates OH ions which then combine with the Fe ions to form a hydrated iron oxide Fe(OH)2 (really FeO, H2O) but instead of forming on the surface where it might give some protection, it often forms as a precipitate in the water itself. The reaction can be summarised by... [Pg.226]

Without coke backfill, the anode reactions proceed according to Eqs. (7-1) and (7-2) with the subsequent reactions (7-3) and (7-4) exclusively at the cable anode. As a result, the graphite is consumed in the course of time and the cable anode resistance becomes high at these points. The process is dependent on the local current density and therefore on the soil resistivity. The life of the cable anode is determined, not by its mechanical stability, but by its electrical effectiveness. [Pg.217]

Passivation—a reduction of the anodic reaction rate of an electrode involved in an electrochemical reaction, such as corrosion. [Pg.49]

In the systems illustrated in Figure 53.1, the anodic reaction has to be electrically balanced by the cathodic reaction, since electrical charge cannot build up at any location. A continuous electrical circuit is required through the metal (for electron conduction) and the environment (for ionic conduction). [Pg.890]

In Section 1.4 it was pointed out that a fundamental principle of corrosion is that the sum of the rates of the cathodic reactions must equal the sum of the rates of the anodic reactions, irrespective of whether the attack is uniform or localised ... [Pg.154]

From these two examples, which as will be seen subsequently, present a very oversimplified picture of the actual situation, it is evident that macroheterogeneities can lead to localised attack by forming a large cathode/small anode corrosion cell. For localised attack to proceed, an ample and continuous supply of the electron acceptor (dissolved oxygen in the example, but other species such as the ion and Cu can act in a similar manner) must be present at the cathode surface, and the anodic reaction must not be stifled by the formation of protective films of corrosion products. In general, localised attack is more prevalent in near-neutral solutions in which dissolved oxygen is the cathode reactant thus in a strongly acid solution the millscale would be removed by reductive dissolution see Section 11.2) and attack would become uniform. [Pg.156]

When dezincification occurs in service the brass dissolves anodically and this reaction is electrochemically balanced by the reduction of dissolved oxygen present in the water at the surface of the brass. Both the copper and zinc constituents of the brass dissolve, but the copper is not stable in solution at the potential of dezincifying brass and is rapidly reduced back to metallic copper. Once the attack becomes established, therefore, two cathodic sites exist —the first at the surface of the metal, at which dissolved oxygen is reduced, and a second situated close to the advancing front of the anodic attack where the copper ions produced during the anodic reaction are reduced to form the porous mass of copper which is characteristic of dezincification. The second cathodic reaction can only be sufficient to balance electrochemically the anodic dissolution of the copper of the brass, and without the support of the reduction of oxygen on the outer face (which balances dissolution of the zinc) the attack cannot continue. [Pg.189]

The nature and kinetics of the cathodic reaction at the surface of the more positive metal and the nature and kinetics of the anodic reaction at the surface of the more negative metal. [Pg.213]

In the rusting of iron and steel, Evansconsiders that the anodic reaction of... [Pg.344]

Metals immersed or partly immersed in water tend to corrode because of their thermodynamic instability. Natural waters contain dissolved solids and gases and sometimes colloidal or suspended matter all these may affect the corrosive projjerties of the water in relation to the metals with which it is in contact. The effect may be either one of stimulation or one of suppression, and it may affect either the cathodic or the anodic reaction more rarely there may be a general blanketing effect. Some metals form a natural protective film in water and the corrosiveness of the water to these metals depends on whether or not the dissolved materials it contains assist in the maintenance of a self-healing film. [Pg.347]

Apart from this effect, increased velocity usually increases corrosion rates by removing corrosion products which otherwise might stifle the anodic reaction and, by providing more oxygen, may stimulate the cathodic reaction... [Pg.358]

In pure dry air at normal temperatures a thin protective oxide film forms on the surface of polished mild steel. Unlike that formed on stainless steels it is not protective in the presence of electrolytes and usually breaks down in air, water and soil. The anodic reaction is ... [Pg.487]

This is a simplified treatment but it serves to illustrate the electrochemical nature of rusting and the essential parts played by moisture and oxygen. The kinetics of the process are influenced by a number of factors, which will be discussed later. Although the presence of oxygen is usually essential, severe corrosion may occur under anaerobic conditions in the presence of sulphate-reducing bacteria Desulphovibrio desulphuricans) which are present in soils and water. The anodic reaction is the same, i.e. the formation of ferrous ions. The cathodic reaction is complex but it results in the reduction of inorganic sulphates to sulphides and the eventual formation of rust and ferrous sulphide (FeS). [Pg.488]

Equation 10.2, which involves consumption of the metal and release of electrons, is termed an anodic reaction. Equation 10.3, which represents consumption of electrons and dissolved species in the environment, is termed a cathodic reaction. Whenever spontaneous corrosion reactions occur, all the electrons released in the anodic reaction are consumed in the cathodic reaction no excess or deficiency is found. Moreover, the metal normally takes up a more or less uniform electrode potential, often called the corrosion or mixed potential (Ecotr)-... [Pg.110]

Fig. 10.1 Schematic illustration of the corrosion of steel in an aerated environment. Note that the electrons released in the anodic reaction are consumed quantitatively in the cathodic reaction, and that the anodic and cathodic products may react to produce Fe(OH)2... Fig. 10.1 Schematic illustration of the corrosion of steel in an aerated environment. Note that the electrons released in the anodic reaction are consumed quantitatively in the cathodic reaction, and that the anodic and cathodic products may react to produce Fe(OH)2...
By contrast, if additional electrons were introduced at the metal surface, the cathodic reaction would speed up (to consume the electrons) and the anodic reaction would be inhibited metal dissolution would be slowed down. This is the basis of cathodic protection. [Pg.111]

The corrosion reaction may also be represented on a polarisation diagram (Fig. 10.4). The diagram shows how the rates of the anodic and cathodic reactions (both expressed in terms of current flow, I) vary with electrode potential, E. Thus at , the net rate of the anodic reaction is zero and it increases as the potential becomes more positive. At the net rate of the cathodic reaction is zero and it increases as the potential becomes more negative. (To be able to represent the anodic and cathodic reaction rates on the same axis, the modulus of the current has been drawn.) The two reaction rates are electrically equivalent at E , the corrosion potential, and the... [Pg.111]

Fig. 10.2 Schematic illustration of partial cathodic protection of steel in an aerated environment. Note that one of the anodic reactions shown in Fig. 10.1 has been annihilated by providing two electrons from an external source an excess of OH ", ions over Fe now exists at... Fig. 10.2 Schematic illustration of partial cathodic protection of steel in an aerated environment. Note that one of the anodic reactions shown in Fig. 10.1 has been annihilated by providing two electrons from an external source an excess of OH ", ions over Fe now exists at...

See other pages where The Anodic Reaction is mentioned: [Pg.112]    [Pg.2732]    [Pg.488]    [Pg.500]    [Pg.461]    [Pg.175]    [Pg.522]    [Pg.528]    [Pg.530]    [Pg.534]    [Pg.537]    [Pg.31]    [Pg.150]    [Pg.182]    [Pg.428]    [Pg.446]    [Pg.453]    [Pg.85]    [Pg.96]    [Pg.97]    [Pg.120]    [Pg.158]    [Pg.158]    [Pg.167]    [Pg.194]    [Pg.439]    [Pg.766]   


SEARCH



Anode reactions

Anodic reactions

© 2024 chempedia.info