Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetramer lithium enolates

Fig. 7.3. Crystal structures of some lithium etiolates of ketones. (A) Unsolvated hexameric enolate of methyl t-butyl ketone (B) tetrahydrofuran solvate of tetramer of enolate of methyl r-butyl ketone (C) tetrahydrofuran solvate of tetramer of enolate of cyclopentanone (D) dimeric enolate of 3,3-dimethyl-4-(r-butyldimethylsiloxy)-2-pentanone. (Structural diagrams are reproduced from Refs. 66-69.) by permission of the American Chemical Society and Verlag Helvetica Chimica Acta AG. Fig. 7.3. Crystal structures of some lithium etiolates of ketones. (A) Unsolvated hexameric enolate of methyl t-butyl ketone (B) tetrahydrofuran solvate of tetramer of enolate of methyl r-butyl ketone (C) tetrahydrofuran solvate of tetramer of enolate of cyclopentanone (D) dimeric enolate of 3,3-dimethyl-4-(r-butyldimethylsiloxy)-2-pentanone. (Structural diagrams are reproduced from Refs. 66-69.) by permission of the American Chemical Society and Verlag Helvetica Chimica Acta AG.
Jackman and Szeverenyi were the first to systematically correlate the quadrupoiar interaction with molecular structure, i.e. with the aggregation of lithium enolates ". They noted that a tetrameric aggregate had a smaller QSC than a dimeric aggregate, ca 135 kHz compared to an estimate of 230 kHz for the dimer. The QSC of the tetramer was shown to be of the same magnitude in three different ethereal solvents. [Pg.164]

Wen and Grutzner used, among other NMR parameters, the QSC of the lithium enolate of acetaldehyde to deduce that it exists as tetramers of different solvation in THF and THF/n-hexane solvent systems . However, the most thorough study of Li QSC and the most interesting in the present context was reported by Jackman and coworkers in 1987167 -pjjg effects on the QSC values of both aggregation and solvation in a number of organolithium systems was studied in this paper, i.e. different arylamides, phenolates, enolates, substituted phenyllithium complexes and lithium phenylacetylide. [Pg.164]

Lithium enolate of p-phenylisobutyrophenone exists as a mixture of monomer and tetramer in dilute THF with = 5.0 x 10 On the other hand, it was shown to... [Pg.909]

Be this as it may, lithium attempts to bind to several bonding partners the structural consequences for the enolates of a ketone, an ester, and an amide are shown in Figure 13.2 In contrast to the usual notation, these enolates are not monomers at all The heteroatom that carries the negative charge in the enolate resonance form is an excellent bonding partner such that several of these heteroatoms are connected to every lithium atom. Lithium enolates often result in tetramers if they are crystallized in the absence of other lithium salts and in the absence of other suitable neutral donors. The lithium enolate of fert-butyl methyl ketone, for example, crystallizes from THF in the form shown in Figure 13.3. [Pg.520]

The mixed (heterogeneous) complexes of a lithium amide (LDA or LiTMP) and a ketone lithium enolate (acetone, cyclohexanone or diisopropyl ketone) have been examined by semiempirical methods (MNDO) by Romesberg and Collum48. If the stabilization associated with these mixed complexes was not determined, the solvation (by THF and HMPA) of the mixed cyclic dimers and trimers was calculated to be generally exothermic (but decreasingly with the steric demand of the enolate) and led to disolvated entities. A set of solvated dimers, trimers and tetramers, cyclic or not, has thus been identified... [Pg.558]

Seebach, Dunitz and coworkers reported, in 1981226, the first crystal structures of lithium enolates of simple ketones, obtained in THF from pinacolone (3,3-dimethyl-2-butanone) and cyclopentanone. Both were arranged as tetrasolvated cubic tetramers, one THF molecule capping each lithium cation (Scheme 58A). Note that pinacolone enolate can also be crystallized, from heptane at — 20 °C, as a prismatic unsolvated hexamer exhibiting an approximate S6 symmetry and six slight it-cation interactions227,228 (Scheme 58B) or as a dimer in the presence of 2 molecules of TriMEDA29. Similarly,... [Pg.561]

Abbotto and Streitwieser have shown that the lithium enolate of p-phenylisobutyro-phenone (PhIBP) evolves from a monomer at high dilution (ca 10 4 M) to a tetramer at 10 2 M. Note that the monomer contribution is still in the 1-5% range in 0.1-1.0 M solutions251. The study of the influence of the ethereal solvent on the aggregation of this very enolate has led to the conclusion that it can be found as a pure monomer (in DME) or a pure tetramer (in MTBE), as well as a mixture of both (in THF)252. Upon addition of HMPA, the tetramer dissociates to monomers solvated by 1-2 molecules of HMPA253. [Pg.566]

Similar information is available for other bases. Lithium phenoxide (LiOPh) is a tetramer in THF. Lithium 3,5-dimethylphenoxide is a tetramer in ether, but addition of HMPA leads to dissociation to a monomer. Enolate anions are nucleophiles in reactions with alkyl halides (reaction 10-68), with aldehydes and ketones (reactions 16-34, 16-36) and with acid derivatives (reaction 16-85). Enolate anions are also bases, reacting with water, alcohols and other protic solvents, and even the carbonyl precursor to the enolate anion. Enolate anions exist as aggregates, and the effect of solvent on aggregation and reactivity of lithium enolate anions has been studied. The influence of alkyl substitution on the energetics of enolate anions has been studied. ... [Pg.390]

Seebach, Dunitz and cowoikers fust described the THF-solvated tetrameric aggregates obtained from THF solutions of 3,3-dimethyl-2-butanone (pinacolone) and cyclopentanone lithium enolates. These are represented as (137). The pinacolone enolate also crystallizes as the unsolvated hexamer (138) from hydrocarbon solution, but this hexamer rearranges instantaneously to the tetramer (137) in the presence of THF. Williard and Carpenter completed the characterization of both the Na+ and the K+ pinacolone enolates.Quite unexpectedly the Na pinacolone enolate is obtained from hydrocarbon/THF solutions as the tetramer (139) with solvation of the Na atoms by unenolized ketone instead of by THF. Hie potassium pinacolone enolate is a hexameric THF solvate depicted as (140) and described as a hexagonal prism. A molecular model of (140) reveals slight chair-like distortions of the hexagonal faces in (140) so that the solvating THF molecules nicely fit into the holes between the pinacolone residues. [Pg.27]

Few ester enolate crystal structures have been described. The lack of structural information is no doubt due to the fact that the ester enolates undergo a-elimination reactions at or below room temperature. A good discussion of the temperatures at which lithium ester enolates undergo this elimination is presented in the same paper with the crystal structures of the lithium enolates derived from r-butyl propionate (163), r-butyl isobutyrate (164) and methyl 3,3-dimethylbutanoate (165). It is significant Aat two of the lithium ester enolates derived from (163) and (165) are both obtained with alkene geometry such that the alkyl group is trans to the enolate oxygen. It is also noteworthy that the two TMEDA-solvated enolates from (163) and (164) are dimeric, while the THF-solvated enolate from (165) exists as a tetramer. [Pg.31]

Two lithium enolates (174) and (175) derived from the vinylogous urethanes (176) and (177) have been crystallized and subjected to X-ray diffraction analysis.Although the individual enolate units combine to form different aggregates, they are very nearly identical in conformation, i.e. s-trans around the 2,3-bond however, both the aggregation state and the diastereoselectivity of the enolates differ. The enolate (175) is obtained from benzene solution as a tetramer and (174) is obtained from THF solution as a dimer. The origin of the diastereoselectivity shown by these enolates is subtle. [Pg.33]

Formaldehyde is not available as a pure monomer because itfomis trimers and tetramers in the pure state (Chapter 52). The aqueous solution formalin used to preserve biological specimens is available—it is 37% formaldehyde and mostly consists of the hydrate CH2(OH)2 see Chapter 6. A pure dry polymer paraformaldehyde is also available and was mentioned in Chapter 9. Neither of these is particularly useful in aldol reactions. The aqueous solution is used in the Mannich reaction that we describe shortly. It is possible to make the short-lived monomer and capture it with a lithium enolate, but this is not trivial experimentally. [Pg.713]

Any discussion of enolate geometry must include the structure of the enolate. It is well known that metal enolates exist as dimers a or other aggregates in ether solvents S (see Section 9.2.C. for a discussion of aggregate formation with LDA).28d Jackman and Szeverenyi suggested that the lithium enolate of isobutyro-phenone exists as a tetramer (31) in THF solution but exists as a dimer (32) in DME. o Such aggregates were proposed by House et ah,3 who found that ketone enolates of groups 1 (lA), 2 (llA), and 3 (lllA) metals... [Pg.722]

Lithium enolates of ketones exist as aggregates in solution.29-3l,34d,35 Mixed aggregates between the enolate anion and the amide base are also possible. In 1981, Seebach and co-workers confirmed by X-ray crystallography that the lithium enolates of pinacolone and cyclopentanone form a tetrameric aggregate in the solid state, and it was assumed that a similar species exited in solution. A THF solvated tetramer of lithium pinacolonate is shown (see 33), as it was reported by Seebach. Williard et al. reported the X-ray structure of... [Pg.723]


See other pages where Tetramer lithium enolates is mentioned: [Pg.236]    [Pg.352]    [Pg.7]    [Pg.377]    [Pg.909]    [Pg.909]    [Pg.561]    [Pg.564]    [Pg.567]    [Pg.568]    [Pg.569]    [Pg.569]    [Pg.569]    [Pg.584]    [Pg.607]    [Pg.264]    [Pg.281]    [Pg.105]    [Pg.62]    [Pg.612]    [Pg.724]   
See also in sourсe #XX -- [ Pg.35 , Pg.83 , Pg.85 , Pg.87 , Pg.88 , Pg.89 , Pg.90 , Pg.93 , Pg.95 , Pg.97 , Pg.150 ]




SEARCH



Enolate lithium

Enolates lithium

Tetramer

Tetramers

© 2024 chempedia.info