Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tertiary amines ethers

Based on this concept, a large variety of HCLA bases incorporating a vicinal heteroatom (tertiary amine, ether) has been tested for this transformation. These are of two types the proline type, which can be considered as a conformationaUy restricted c/5-fused 5-membered ring bicyclic structure (type A), and the norephedrine- or phenylglycine-type, leading to a more flexible, substituted 5-membered ring structure (type B) (Figure 3). [Pg.1179]

Intramolecular Reaction of Diazo Compounds with Tertiary Amines, Ethers and Thioethers... [Pg.63]

Scheme 221. Ylide Formation from Diazo Compounds Bearing a Tertiary Amine, Ether, or Thioether... Scheme 221. Ylide Formation from Diazo Compounds Bearing a Tertiary Amine, Ether, or Thioether...
Suitable electron donators for organoalanes are amines (especially tertiary amines), ethers, or anions such as, for example, hydride, alkyl, alkoxy, or halogen. When organoaluminum compounds combine with these electron donors, compounds of tetravalent aluminum are formed. Stable anions with higher coordination numbers, i.e., analogs of [AlFe]3-, have not been observed so far among organoaluminum compounds. [Pg.284]

Keywords C-H activation Tertiary amines Ethers Alcohols sp C-H bond C-H oxidation C-C coupling C-H amidation Metal-firee C-H activation Redox-neutral... [Pg.36]

Some less reactive tertiary amines can be mixed with an excess of methyl toluene-/)-sulphonate, m.p. 28 , and the mixture (without a solvent) heated to a much higher temperature. The mixture is allowed to cool, but before solidification occurs, it is thoroughly stirred with ether to extract unused sulphonate, and the insoluble quaternary metho-toluene-/)-sulphonate may then crystallise. If ciystallisation does not occur, dissolve this residue in ethanol and treat one portion with ethanolic picric acid (to precipitate the methopicrate) and another portion with cold concentrated ethanolic sodium iodide (to precipitate the methiodide). (M.ps. of the siilphon.ates, pp. 553 -554.)... [Pg.378]

Method 2. Place a 3 0 g. sample of the mixture of amines in a flask, add 6g. (4-5 ml.) of benzenesulphonyl chloride (or 6 g. of p-toluenesulphonyl chloride) and 100 ml. of a 5 per cent, solution of sodium hydroxide. Stopper the flask and shake vigorously until the odour of the acid chloride has disappeared open the flask occasionally to release the pressure developed by the heat of the reaction. AUow the mixture to cool, and dissolve any insoluble material in 60-75 ml. of ether. If a solid insoluble in both the aqueous and ether layer appears at this point (it is probably the sparingly soluble salt of a primary amine, e.g., a long chain compound of the type CjH5(CH2) NHj), add 25 ml. of water and shake if it does not dissolve, filter it off. Separate the ether and aqueous layers. The ether layer will contain the unchanged tertiary amine and the sulphonamide of the secondary amine. Acidify the alkaline aqueous layer with dilute hydrochloric acid, filter off the sulphonamide of the primary amine, and recrystaUise it from dilute alcohol. Extract the ether layer with sufficient 5 per cent, hydrochloric acid to remove all the tertiary amine present. Evaporate the ether to obtain the sulphonamide of the secondary amine recrystaUise it from alcohol or dilute alcohol. FinaUy, render the hydrochloric acid extract alkaline by the addition of dilute sodium hydroxide solution, and isolate the tertiary amine. [Pg.651]

Allow a mixture of 0-5 g. of the tertiary amine and 0-5 ml. of colourless methyl iodide to stand for 5 minutes. If reaction has not occurred, warm under reflux for 5 minutes on a water bath and then cool in ice water. The mixture will generally set solid if it does not, scratch the sides of the tube with a glass rod. RecrystaUise the solid product from absolute alcohol, ethyl acetate, acetone, glacial acetic acid or alcohol-ether. [Pg.660]

Alternatively, dissolve 0-5 g. of the tertiary amine and 0-5 ml. of methyl iodide in 5 ml. of dry ether or benzene, and allow the mixture to stand for several hours. The methiodide precipitates, usually in a fairly pure state. Filter, wash with a little of the solvent, and recrystallise as above. [Pg.660]

The oxidation of higher alkenes in organic solvents proceeds under almost neutral conditions, and hence many functional groups such as ester or lac-tone[26,56-59], sulfonate[60], aldehyde[61-63], acetal[60], MOM ether[64], car-bobenzoxy[65], /-allylic alcohol[66], bromide[67,68], tertiary amine[69], and phenylselenide[70] can be tolerated. Partial hydrolysis of THP ether[71] and silyl ethers under certain conditions was reported. Alcohols are oxidized with Pd(II)[72-74] but the oxidation is slower than the oxidation of terminal alkenes and gives no problem when alcohols are used as solvents[75,76]. [Pg.24]

Many perfluoroaUphatic ethers and tertiary amines have been prepared by electrochemical fluorination (1 6), direct fluorination using elemental fluorine (7—9), or, in a few cases, by fluorination using cobalt trifluoride (10). Examples of lower molecular weight materials are shown in Table 1. In addition to these, there are three commercial classes of perfluoropolyethers prepared by anionic polymerization of hexafluoropropene oxide [428-59-1] (11,12), photooxidation of hexafluoropropene [116-15-4] or tetrafluoroethene [116-14-3] (13,14), or by anionic ring-opening polymeriza tion of tetrafluorooxetane [765-63-9] followed by direct fluorination (15). [Pg.296]

Perfluorinated ethers and perfluorinated tertiary amines do not contribute to the formation of ground level ozone and are exempt from VOC regulations (32). The commercial compounds discussed above have an ozone depletion potential of zero because they do not contain either chlorine or bromine which take part in catalytic cycles that destroy stratospheric ozone (33). [Pg.298]

Beryllium Hydride. BeryUium hydride [13597-97-2] is an amorphous, colorless, highly toxic polymeric soHd (H = 18.3%) that is stable to water but hydroly2ed by acid (8). It is insoluble in organic solvents but reacts with tertiary amines at 160°C to form stable adducts, eg, (R3N-BeH2 )2 (9). It is prepared by continuous thermal decomposition of a di-/-butylberylhum-ethyl ether complex in a boiling hydrocarbon (10). [Pg.299]

Lithium Acetylide. Lithium acetyhde—ethylenediamine complex [50475-76-8], LiCM7H -112X01120112X112, is obtained as colodess-to-light-tan, free-flowing crystals from the reaction of /V-lithoethylenediamine and acetylene in an appropriate solvent (131). The complex decomposes slowly above 40°O to lithium carbide and ethylenediamine. Lithium acetyhde—ethylenediamine is very soluble in primary amines, ethylenediamine, and dimethyl sulfoxide. It is slightly soluble in ether, THF, and secondary and tertiary amines, and is insoluble in hydrocarbons. [Pg.229]

Synthesis of Silicone Monomers and Intermediates. Another important reaction for the formation of Si—C bonds, in addition to the direct process and the Grignard reaction, is hydrosdylation (eq. 3), which is used for the formation of monomers for producing a wide range of organomodified sihcones and for cross-linking sihcone polymers (8,52—58). Formation of ether and ester bonds at sihcon is important for the manufacture of curable sihcone materials. Alcoholysis of the Si—Cl bond (eq. 4) is a method for forming silyl ethers. HCl removal is typically accomphshed by the addition of tertiary amines or by using NaOR in place of R OH to form NaCl. [Pg.44]

Cationic Starches. The two general categories of commercial cationic starches are tertiary and quaternary aminoalkyl ethers. Tertiary aminoalkyl ethers are prepared by treating an alkaline starch dispersion with a tertiary amine containing a P-halogenated alkyl, 3-chloto-2-hydtoxyptopyl radical, or a 2,3-epoxypropyl group. Under these reaction conditions, starch ethers are formed that contain tertiary amine free bases. Treatment with acid easily produces the cationic form. Amines used in this reaction include 2-dimethylaminoethyl chloride, 2-diethylaminoethyl chloride, and A/-(2,3-epoxypropyl) diethylamine. Commercial preparation of low DS derivatives employ reaction times of 6—12 h at 40—45°C for complete reaction. The final product is filtered, washed, and dried. [Pg.345]

Methyl bromide slowly hydrolyzes in water, forming methanol and hydrobromic acid. The bromine atom of methyl bromide is an excellent leaving group in nucleophilic substitution reactions and is displaced by a variety of nucleophiles. Thus methyl bromide is useful in a variety of methylation reactions, such as the syntheses of ethers, sulfides, esters, and amines. Tertiary amines are methylated by methyl bromide to form quaternary ammonium bromides, some of which are active as microbicides. [Pg.294]

Deall lation. Chloroformates such as vinyl chloroformates (40) are used to dealkylate tertiary amines. Chloroformates are superior to the typical Von Braun reagent, cyanogen bromide, because of increased selectivity producing cleaner products. Other chloroformates such as aHyl, methyl, phenyl, and trichloroethyl have also been used in dealkylation reactions. Although the dealkylation reaction using chloroformates is mostiy carried out on tertiary amines, dealkylation of oxygen or sulfur centers, ie, ethers or thioethers, can also be achieved. a-Chloroethyl chloroformate [50893-53-3] (ACE-Cl) (41,42) is superior to all previously used chloroformates for the dealkylation reaction. ACE-Cl has the advantage that the conditions requked for ACE... [Pg.39]

H-Bond Acceptor (HBA) Acyl chlorides Acyl fluorides Hetero nitrogen aromatics Hetero oj gen aromatics Tertiary amides Tertiary amines Other nitriles Other nitros Isocyanates Peroxides Aldehydes Anhydrides Cyclo ketones Ahphatic ketones Esters Ethers Aromatic esters Aromatic nitriles Aromatic ethers Sulfones Sulfolanes... [Pg.1318]

In practice it is found that reactions 1 and 2 are of greatest importance and ester and ether linkages occur in roughly equal amounts. The reaction is modified in commercial practice by the use of organic bases, tertiary amines, to catalyse the reaction. [Pg.759]

Catalysts such as dibutyl tin dilaurate or tertiary amines are added to promote the urethane reaction and/or subsequent moisture cure. Dimorpholine diethyl ether is particularly effective at promoting moisture cure without promoting allophanate side reactions at the application temperature (which leads to instability in the hot melt pot) [29]. [Pg.733]

Catalysts serve a dual purpose in one-component moisture-curing urethanes. The first purpose is to accelerate the prepolymer synthesis. The second purpose is to catalyze the curing reaction of the adhesive with moisture. The most common catalysts used to promote both prepolymer formation (NCO/OH) and later the adhesive curing reaction (NCO/H2O) are dibutyltin dilaurate and DMDEE ((tertiary amine. A stabilizer such as 2,5-pentanedione is sometimes added when tin is used, but this specific stabilizer has fallen from favor in recent years, due to toxicity concerns. DMDEE is commonly used in many one-component moisture-curing urethanes. DMDEE is one of the few tertiary amines with a low alkalinity and a low vapor pressure. The latter... [Pg.782]

Electrochemical fluonnation ot N,N dialkylammo-substituted carboxylic acids as their methyl esters produces the analogous perfluonnated tertiary amine carboxylic acid derivatives in 18-30% yields as well as cyclic amine ethers [JOO]... [Pg.116]

H-bond acceptors carbonyls, ethers, esters, aromatic hydrocarbons, tertiary amines. [Pg.397]

Similar behavior can be observed even in the case of substituted quinuclideines 170). Neostrychnine (68) serves as an example of more complex compounds which show spectra differing from those of other enamines. The ultraviolet spectrum of this compound exhibits no batho-chromic shift and its basicity is considerably decreased 159,171,172) (pK in methylcellosolve at 20° is 3.8, whereas the analogous saturated compound has a pK under the same conditions of 7.45, and a compound with the double bond further removed, strychnine, has a pK of 7.37). As another example, the ultraviolet spectrum of trimethyl conkurchine (69) shows the same absorption maxima as a saturated tertiary amine (A in ether, about 213 m/i). [Pg.270]

Nearly every substitution of the aromatic ring has been tolerated for the cyclization step using thermal conditions, while acid-promoted conditions limited the functionality utilized. Substituents included halogens, esters, nitriles, nitro, thio-ethers, tertiary amines, alkyl, ethers, acetates, ketals, and amides. Primary and secondary amines are not well tolerated and poor yield resulted in the cyclization containing a free phenol. The Gould-Jacobs reaction has been applied to heterocycles attached and fused to the aniline. [Pg.430]


See other pages where Tertiary amines ethers is mentioned: [Pg.204]    [Pg.377]    [Pg.188]    [Pg.347]    [Pg.63]    [Pg.187]    [Pg.204]    [Pg.377]    [Pg.188]    [Pg.347]    [Pg.63]    [Pg.187]    [Pg.167]    [Pg.260]    [Pg.404]    [Pg.11]    [Pg.296]    [Pg.326]    [Pg.119]    [Pg.178]    [Pg.135]    [Pg.23]    [Pg.498]    [Pg.5]    [Pg.32]    [Pg.771]    [Pg.61]    [Pg.115]    [Pg.128]    [Pg.295]   
See also in sourсe #XX -- [ Pg.164 ]




SEARCH



Amine ether

Amines tertiary

© 2024 chempedia.info